精英家教网 > 高中数学 > 题目详情
16.一个等差数列的前三项为:a,2a-1,3-a.则这个数列的通项公式为an=$\frac{4+n}{4}$.

分析 利用等差数列的性质即可得出.

解答 解:设此等差数列为{an},公差为d.
由等差数列的性质可得:2(2a-1)=a+3-a,
解得a=$\frac{5}{4}$.
∴a1=a=$\frac{5}{4}$,d=2a-1-a=a-1=$\frac{1}{4}$.
∴通项公式an=$\frac{5}{4}$+$\frac{1}{4}$(n-1)=$\frac{4+n}{4}$.
故答案为:an=$\frac{4+n}{4}$.

点评 本题考查了等差数列的通项公式性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.两名男生和一名女生随机站成一排,则男生不相邻的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.数列{an}是递增数列,且满足an+1=f(an),a1∈(0,1),则f(x)不可能是(  )
A.f(x)=$\sqrt{x}$B.f(x)=2x-1C.f(x)=$\sqrt{2x-{x}^{2}}$D.f(x)=log2(x+1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}满足a1=1,Sn=$\frac{(n+1{)a}_{n}}{2}$(n∈N)求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知曲线y=ex+a与y=(x-1)2恰好存在两条公切线,则实数a的取值范围为(-∞,2ln2-3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.定积分∫${\;}_{0}^{1}$$\sqrt{x(2-x)}$dx的值为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知O为坐标原点,$\overrightarrow{{OZ}_{1}}$对应的复数为-3+4i,$\overrightarrow{{OZ}_{2}}$对应的复数为2a+i(a∈R),若$\overrightarrow{{OZ}_{1}}$与$\overrightarrow{{OZ}_{2}}$共线,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若等比数列的各项均为正数,前4项的和为9,积为$\frac{81}{4}$,则前4项倒数的和为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足,|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=5,$\overrightarrow{a}$•$\overrightarrow{b}$=6,λ∈R,则|$\overrightarrow{a}$-λ$\overrightarrow{b}$|的取值范围是(  )
A.[$\frac{5}{3}$,+∞)B.[$\frac{6}{5}$,+∞)C.[$\frac{8}{5}$,+∞)D.[1,4]

查看答案和解析>>

同步练习册答案