精英家教网 > 高中数学 > 题目详情
8.已知O为坐标原点,$\overrightarrow{{OZ}_{1}}$对应的复数为-3+4i,$\overrightarrow{{OZ}_{2}}$对应的复数为2a+i(a∈R),若$\overrightarrow{{OZ}_{1}}$与$\overrightarrow{{OZ}_{2}}$共线,求a的值.

分析 利用复数的几何意义、向量共线定理即可得出.

解答 解:$\overrightarrow{{OZ}_{1}}$=(-3,4),$\overrightarrow{{OZ}_{2}}$=(2a,1),
∵$\overrightarrow{{OZ}_{1}}$与$\overrightarrow{{OZ}_{2}}$共线,
∴8a+3=0,
解得a=-$\frac{3}{8}$.

点评 本题考查了复数的几何意义、向量共线定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.在△ABC中,角A、B、C分别是边a、b、c的对角,且3a=2b.
(Ⅰ)若B=60°,求sinC的值;
(Ⅱ)若$cosC=\frac{2}{3}$,求sin(A-B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知a1=1,an+1=${a}_{n}{+2}^{n}$,求通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.一个等差数列的前三项为:a,2a-1,3-a.则这个数列的通项公式为an=$\frac{4+n}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知全集为U,M={y|y=2|x|},N={x|y=1g(9-x2)},则∁UM∩N=(-3,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知复数z=($\frac{1+i}{1-i}$)2016+(1-i)2(其中i为虚数单位).若复数z的共扼复数为$\overline{z}$,且$\overline{z}$•z1=4+3i.
(1)求复数z1及z1在复平面中对应点的坐标;
(2)若z1是关于x的方程x2-px+q=0的一个根,求实数p,q的值,并求出方程x2-px+q=0的另一个复数根.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.(x2+$\frac{1}{{x}^{2}}$-2)6展开式中x6的系数为495.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=sin(x-$\frac{π}{6}$)cos(x-$\frac{π}{6}$)(x∈R),则下列结论错误的是(  )
A.函数f(x)的最小正周期为πB.函数f(x)的图象关于直线x=-$\frac{π}{12}$对称
C.函数f(x)的图象关于点(-$\frac{π}{6}$,0)对称D.函数f(x)在区间[0,$\frac{5π}{12}$]上是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若$\sqrt{2}sin(θ+{45^0})=5sinθ$,则tanθ等于(  )
A.$-\frac{1}{4}$B.$\frac{1}{4}$C.-4D.4

查看答案和解析>>

同步练习册答案