分析 化简Sn=3•2n+1可得an+1=3•2n,再检验a1=S1=3•2+1=7不满足上式,从而求得.
解答 解:∵Sn=3•2n+1,Sn+1=3•2n+1+1,
∴an+1=3•2n,
∴an=3•2n-1,(n≥2)
又∵a1=S1=3•2+1=7不满足上式,
∴an=$\left\{\begin{array}{l}{7,n=1}\\{3•{2}^{n-1},n≥2}\end{array}\right.$,
故答案为:$\left\{\begin{array}{l}{7,n=1}\\{3•{2}^{n-1},n≥2}\end{array}\right.$.
点评 本题考查了数列的前n项与数列的通项的关系,同时考查了分类讨论的思想应用.
科目:高中数学 来源: 题型:选择题
| A. | p是假命题,其否定是:?k∈(2,+∞),直线y=kx与双曲线$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1有交点 | |
| B. | p是真命题,其否定是:?k∈(0,2),直线y=kx与双曲线$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1无交点 | |
| C. | p是假命题,其否定是:?k∈(0,2),直线y=kx与双曲线$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1无交点 | |
| D. | p是真命题,其否定是:?k∈(2,+∞),直线y=kx与双曲线$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1无交点 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\left\{\begin{array}{l}{x-y≥0}\\{x+y≥0}\\{0≤x≤3}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x-y≥0}\\{x+y≤0}\\{0≤x≤3}\end{array}\right.$ | ||
| C. | $\left\{\begin{array}{l}{x-y≤0}\\{x+y≤0}\\{0≤x≤3}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x-y≤0}\\{x+y≥0}\\{0≤x≤3}\end{array}\right.$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 极大值为f(2)=5,极小值为f(3)=1,f(-1)=-3 | |
| B. | 极大值为f(2)=5,极小值为f(3)=f(0)=1 | |
| C. | 极大值为f(2)=5,极小值为f(3)=1 | |
| D. | 极大值为f(2)=5,极小值为f(0)=1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com