精英家教网 > 高中数学 > 题目详情
3.若f(x)=$\frac{\sqrt{{a}^{2}-{x}^{2}}}{|x+a|-a}$是奇函数,则实数a的取值范围为(0,+∞).

分析 由f(x)是奇函数得到f(-x)=-f(x),由此可以得到|x+a|+|a-x|=2a>0,所以a得范围是(0,+∞).

解答 解:∵f(x)=$\frac{\sqrt{{a}^{2}-{x}^{2}}}{|x+a|-a}$是奇函数,
∴f(-x)=-f(x),即$\frac{\sqrt{{a}^{2}-{x}^{2}}}{|a-x|-a}$=-$\frac{\sqrt{{a}^{2}-{x}^{2}}}{|x+a|-a}$,
∴|x+a|-a=a-|a-x|,
∴|x+a|+|a-x|=2a>0,
∴a>0,
故答案为:(0,+∞).

点评 本题考查由f(x)是奇函数得到f(-x)=-f(x),由此可以得到|x+a|+|a-x|=2a>0,所以a得范围是(0,+∞).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图,某测量人员,为了测量西江北岸不能到达的两点A,B之间的距离,她在西江南岸找到一个点C,从C点可以观察到点A,B;找到一个点D,从D点可以观察到点A,C;找到一个点E,从E点可以观察到点B,C;并测量得到数据;
∠ACD=90°,∠ADC=60°,∠ACB=30°,∠BCE=105°,∠CEB=45°,DC=CE=2(百米).
(1)求△CDE的面积;
(2)求A,B之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.从甲、乙两品种的棉花中各抽测了10根棉花的纤维长度(单位:mm),所得数据如图茎叶图.记甲、乙两品种棉花的纤维长度的平均值分别为$\overline{{x}_{甲}}$,$\overline{{x}_{乙}}$,标准差分别为s,s,则(  )
A.$\overline{{x}_{甲}}$<$\overline{{x}_{乙}}$,s>sB.$\overline{{x}_{甲}}$<$\overline{{x}_{乙}}$,s<s
C.$\overline{{x}_{甲}}$>$\overline{{x}_{乙}}$,s>sD.$\overline{{x}_{甲}}$>$\overline{{x}_{乙}}$,s<s

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,设$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$为互相垂直的单位向量,则向量$\overrightarrow{a}$-$\overrightarrow{b}$可表示为(  )
A.2$\overrightarrow{{e}_{2}}$-$\overrightarrow{{e}_{1}}$B.3$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$C.2$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$D.$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设100件产品中有70件一等品,25件二等品,规定一、二等品为合格品,从中任取1件,求:
(1)取得一等品的概率;
(2)已知取得的是合格品,求它是一等品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=$\left\{\begin{array}{l}{2x+1},{-3<x≤0}\\{1-{x}^{2}},{0<x≤3}\end{array}\right.$的定义域是{x|-3<x≤3}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列在实数域上定义的函数中,是奇函数的是(  )
A.y=x3sinxB.y=x2-sinxC.y=2x+2D.y=xcosx

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an}的前n项和为Sn,且Sn=3•2n+1,则an=$\left\{\begin{array}{l}{7,n=1}\\{3•{2}^{n-1},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知an=$\frac{2}{n(n+1)}$,则数列{an}的前100项和S100=(  )
A.$\frac{100}{101}$B.$\frac{200}{101}$C.$\frac{99}{100}$D.$\frac{198}{100}$

查看答案和解析>>

同步练习册答案