精英家教网 > 高中数学 > 题目详情
13.如图,某测量人员,为了测量西江北岸不能到达的两点A,B之间的距离,她在西江南岸找到一个点C,从C点可以观察到点A,B;找到一个点D,从D点可以观察到点A,C;找到一个点E,从E点可以观察到点B,C;并测量得到数据;
∠ACD=90°,∠ADC=60°,∠ACB=30°,∠BCE=105°,∠CEB=45°,DC=CE=2(百米).
(1)求△CDE的面积;
(2)求A,B之间的距离.

分析 (1)利用周角定义求出∠DCE度数,再由CD与CE的长,利用三角形面积公式求出三角形CDE面积即可;
(2)连接AB,在直角三角形ACD中,利用锐角三角函数定义求出AC的长,在直角三角形BCE中,求出∠CBE度数,利用正弦定理求出BC的长,在三角形ABC中,利用余弦定理求出AB的平方即可.

解答 解:(1)在△CDE中,∠DCE=360°-90°-30°-105°=135°,
∴S△CDE=$\frac{1}{2}$CD•CE•sin135°=$\frac{1}{2}$×2×2×$\frac{\sqrt{2}}{2}$=$\sqrt{2}$(平方百米);
(2)连接AB,
根据题意知,在Rt△ACD中,AC=DC•tan∠ADC=2×tan60°=2$\sqrt{3}$(百米),
在△BCE中,∠CBE=180°-∠BCE-∠CEB=180°-105°-45°=30°,
由正弦定理得$\frac{BC}{sin∠CEB}$=$\frac{CE}{sin∠CBE}$,代入求得BC=2$\sqrt{2}$(百米),
在△ABC中,由余弦定理得:AB2=AC2+BC2-2AC•BCcos∠ACB,
则AB2=12+8-2×2$\sqrt{3}$×2$\sqrt{2}$•$\frac{\sqrt{3}}{2}$=20-12$\sqrt{2}$,
∴AB=2$\sqrt{5-3\sqrt{2}}$.

点评 此题考查了正弦、余弦定理,三角形面积公式,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知{an}是等差数列,满足a1=3,a5=15,数列{bn}满足b1=4,b4=20,且{bn-an}(n∈N+)是等比数列.
(1)求数列{an}和{bn}的通项公式;
(2)求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=2x-2,g(x)=ax(x-2a)同时满足条件:①?x∈R,f(x)<0或g(x)<0;②?x∈(-∞,-4),使得f(x)g(x)<0,则实数a的取值范围是(  )
A.(-2,0)B.(-∞,-2)C.(-8,0)D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若点P(a,b)在不等式组$\left\{\begin{array}{l}{x+y-2≤0}\\{x-y-2≤0}\\{x≥1}\end{array}\right.$所表示的平面区域内,则原点O到直线ax+by-1=0的距离的取值范围是[$\frac{1}{2}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.过定点A(1,1)作直线l与双曲线x2-$\frac{{y}^{2}}{2}$=1交于P、Q两点,若A(1,1)是线段段PQ的中点,这样的直线存在吗?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在等差数列{an}中,前m项(m为奇数)之和为98,其中奇数项之和为56,且am-a1=48.
(1)求等差数列{an}的通项公式;
(2)求$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+$\frac{1}{{a}_{3}{a}_{4}}$+…$\frac{1}{{a}_{m-1}{a}_{m}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知质数p,q满足q5-2p2=1,则p+q=14.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.命题p:?k∈(0,2),直线y=kx与双曲线$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1有交点,则下列表述正确的是(  )
A.p是假命题,其否定是:?k∈(2,+∞),直线y=kx与双曲线$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1有交点
B.p是真命题,其否定是:?k∈(0,2),直线y=kx与双曲线$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1无交点
C.p是假命题,其否定是:?k∈(0,2),直线y=kx与双曲线$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1无交点
D.p是真命题,其否定是:?k∈(2,+∞),直线y=kx与双曲线$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1无交点

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若f(x)=$\frac{\sqrt{{a}^{2}-{x}^{2}}}{|x+a|-a}$是奇函数,则实数a的取值范围为(0,+∞).

查看答案和解析>>

同步练习册答案