精英家教网 > 高中数学 > 题目详情
1.若点P(a,b)在不等式组$\left\{\begin{array}{l}{x+y-2≤0}\\{x-y-2≤0}\\{x≥1}\end{array}\right.$所表示的平面区域内,则原点O到直线ax+by-1=0的距离的取值范围是[$\frac{1}{2}$,1].

分析 由约束条件作出可行域,由点到直线的距离公式求出原点O到直线ax+by-1=0的距离为$\frac{1}{\sqrt{{a}^{2}+{b}^{2}}}$,结合$\sqrt{{a}^{2}+{b}^{2}}$的几何意义得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{x+y-2≤0}\\{x-y-2≤0}\\{x≥1}\end{array}\right.$作出可行域如图,

原点O到直线ax+by-1=0的距离为$\frac{|-1|}{\sqrt{{a}^{2}+{b}^{2}}}=\frac{1}{\sqrt{{a}^{2}+{b}^{2}}}$,
由图可知$\sqrt{{a}^{2}+{b}^{2}}$的最小值为|OA|=1,最大值为|OB|=2,
∴原点O到直线ax+by-1=0的距离的取值范围是[$\frac{1}{2}$,1].
故答案为:[$\frac{1}{2}$,1].

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知等比数列{an},满足an+1>an,a1+a4=9,a2•a3=8.
(1)求数列{an}的通项公式;
(2)求数列{(2n-1)an}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设a,b∈R,那么“ln$\frac{a}{b}$>0”是“a>b>0”的(  )
A.充分不必要条件B.充要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.等比数列{an}中,a1•a7=4,则a22+a62的最小值为(  )
A.4B.6C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知△ABC的三边长AC=6,BC=8,AB=10,P为AB边上任意一点,则$\overrightarrow{CP}$•($\overrightarrow{BA}-\overrightarrow{BC}$)的最大值为(  )
A.0B.36C.48D.60

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图:已知,在△OBC中,点A是BC的中点,$\overrightarrow{OD}$=2$\overrightarrow{DB}$,DC和OA交于点E,则△OEC与△OBC的面积的比值是(  )
A.$\frac{4}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,某测量人员,为了测量西江北岸不能到达的两点A,B之间的距离,她在西江南岸找到一个点C,从C点可以观察到点A,B;找到一个点D,从D点可以观察到点A,C;找到一个点E,从E点可以观察到点B,C;并测量得到数据;
∠ACD=90°,∠ADC=60°,∠ACB=30°,∠BCE=105°,∠CEB=45°,DC=CE=2(百米).
(1)求△CDE的面积;
(2)求A,B之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知平面向量$\overrightarrow{α}$,$\overrightarrow{β}$,|$\overrightarrow{α}$|=1,$\overrightarrow{β}$=(2,0),$\overrightarrow{α}$⊥($\overrightarrow{α}$-2$\overrightarrow{β}$),求|2$\overrightarrow{α}$+$\overrightarrow{β}$|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,设$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$为互相垂直的单位向量,则向量$\overrightarrow{a}$-$\overrightarrow{b}$可表示为(  )
A.2$\overrightarrow{{e}_{2}}$-$\overrightarrow{{e}_{1}}$B.3$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$C.2$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$D.$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$

查看答案和解析>>

同步练习册答案