分析 根据$\overrightarrow{α}$⊥($\overrightarrow{α}$-2$\overrightarrow{β}$)得出$\overrightarrow{α}$•($\overrightarrow{α}$-2$\overrightarrow{β}$)=0,列出方程解出$\overrightarrow{α}•\overrightarrow{β}$,计算|2$\overrightarrow{α}$+$\overrightarrow{β}$|2再开方即可.
解答 解:$|\overrightarrow{β}|$=2,
∵$\overrightarrow{α}$⊥($\overrightarrow{α}$-2$\overrightarrow{β}$),∴$\overrightarrow{α}$•($\overrightarrow{α}$-2$\overrightarrow{β}$)=0,
即${\overrightarrow{α}}^{2}-2\overrightarrow{α}•\overrightarrow{β}=0$,∴$\overrightarrow{α}•\overrightarrow{β}$=$\frac{1}{2}$.
∴|2$\overrightarrow{α}$+$\overrightarrow{β}$|2=4${\overrightarrow{α}}^{2}+4\overrightarrow{α}•\overrightarrow{β}+{\overrightarrow{β}}^{2}$=4+2+4=10.
∴|2$\overrightarrow{α}$+$\overrightarrow{β}$|=$\sqrt{10}$.
点评 本题考查了平面向量的数量级运算,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p是假命题,其否定是:?k∈(2,+∞),直线y=kx与双曲线$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1有交点 | |
| B. | p是真命题,其否定是:?k∈(0,2),直线y=kx与双曲线$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1无交点 | |
| C. | p是假命题,其否定是:?k∈(0,2),直线y=kx与双曲线$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1无交点 | |
| D. | p是真命题,其否定是:?k∈(2,+∞),直线y=kx与双曲线$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1无交点 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com