精英家教网 > 高中数学 > 题目详情
2.命题p:?k∈(0,2),直线y=kx与双曲线$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1有交点,则下列表述正确的是(  )
A.p是假命题,其否定是:?k∈(2,+∞),直线y=kx与双曲线$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1有交点
B.p是真命题,其否定是:?k∈(0,2),直线y=kx与双曲线$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1无交点
C.p是假命题,其否定是:?k∈(0,2),直线y=kx与双曲线$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1无交点
D.p是真命题,其否定是:?k∈(2,+∞),直线y=kx与双曲线$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1无交点

分析 求得双曲线的渐近线方程和斜率,由题意可得k>$\frac{3}{2}$或k<-$\frac{3}{2}$.可得命题P为真命题,运用命题的否定形式,即可得到结论.

解答 解:若直线y=kx与双曲线$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1有交点,
由双曲线的渐近线方程y=±$\frac{3}{2}$x,
且双曲线的焦点在y轴上,
可得k>$\frac{3}{2}$或k<-$\frac{3}{2}$.
故?k∈(0,2),直线y=kx与双曲线$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1有交点为真命题;
否定是:?k∈(0,2),直线y=kx与双曲线$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1无交点.
故选:B.

点评 本题考查直线与双曲线的位置关系的判断,注意运用渐近线的斜率,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.设a,b∈R,那么“ln$\frac{a}{b}$>0”是“a>b>0”的(  )
A.充分不必要条件B.充要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,某测量人员,为了测量西江北岸不能到达的两点A,B之间的距离,她在西江南岸找到一个点C,从C点可以观察到点A,B;找到一个点D,从D点可以观察到点A,C;找到一个点E,从E点可以观察到点B,C;并测量得到数据;
∠ACD=90°,∠ADC=60°,∠ACB=30°,∠BCE=105°,∠CEB=45°,DC=CE=2(百米).
(1)求△CDE的面积;
(2)求A,B之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知平面向量$\overrightarrow{α}$,$\overrightarrow{β}$,|$\overrightarrow{α}$|=1,$\overrightarrow{β}$=(2,0),$\overrightarrow{α}$⊥($\overrightarrow{α}$-2$\overrightarrow{β}$),求|2$\overrightarrow{α}$+$\overrightarrow{β}$|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)的定义域为R,则“f(x)是奇函数”是“f(1)=-f(-1)”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={-1,0,1},B={x|y=x2,x∈R},则A∩B=(  )
A.{0,1}B.{-1,0,1}C.{1}D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.从甲、乙两品种的棉花中各抽测了10根棉花的纤维长度(单位:mm),所得数据如图茎叶图.记甲、乙两品种棉花的纤维长度的平均值分别为$\overline{{x}_{甲}}$,$\overline{{x}_{乙}}$,标准差分别为s,s,则(  )
A.$\overline{{x}_{甲}}$<$\overline{{x}_{乙}}$,s>sB.$\overline{{x}_{甲}}$<$\overline{{x}_{乙}}$,s<s
C.$\overline{{x}_{甲}}$>$\overline{{x}_{乙}}$,s>sD.$\overline{{x}_{甲}}$>$\overline{{x}_{乙}}$,s<s

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,设$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$为互相垂直的单位向量,则向量$\overrightarrow{a}$-$\overrightarrow{b}$可表示为(  )
A.2$\overrightarrow{{e}_{2}}$-$\overrightarrow{{e}_{1}}$B.3$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$C.2$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$D.$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an}的前n项和为Sn,且Sn=3•2n+1,则an=$\left\{\begin{array}{l}{7,n=1}\\{3•{2}^{n-1},n≥2}\end{array}\right.$.

查看答案和解析>>

同步练习册答案