精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)的定义域为R,则“f(x)是奇函数”是“f(1)=-f(-1)”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

分析 f(x)是奇函数,可得f(1)=-f(-1),反之不一定成立,取f(x)=$\left\{\begin{array}{l}{0,x=±1}\\{{x}^{2},x≠±1}\end{array}\right.$.即可判断出关系.

解答 解:f(x)是奇函数⇒f(1)=-f(-1),反之不一定成立,取f(x)=$\left\{\begin{array}{l}{0,x=±1}\\{{x}^{2},x≠±1}\end{array}\right.$.
∴“f(x)是奇函数”是“f(1)=-f(-1)”的充分不必要条件,
故选:A.

点评 本题考查了函数的奇偶性、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知复数z=$\frac{3-i}{1+ai}$是纯虚数,则实数a=(  )
A.3B.-3C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.过定点A(1,1)作直线l与双曲线x2-$\frac{{y}^{2}}{2}$=1交于P、Q两点,若A(1,1)是线段段PQ的中点,这样的直线存在吗?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知质数p,q满足q5-2p2=1,则p+q=14.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,设$\overrightarrow{AB}$=$\overrightarrow{{e}_{1}}$,$\overrightarrow{AC}$=$\overrightarrow{{e}_{2}}$,D,E是边BC的三等分点,点D靠近点B,则$\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{{e}_{2}}$+$\frac{2}{3}$$\overrightarrow{{e}_{1}}$,$\overrightarrow{AE}$=$\frac{1}{3}$$\overrightarrow{{e}_{1}}$+$\frac{2}{3}$$\overrightarrow{{e}_{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.命题p:?k∈(0,2),直线y=kx与双曲线$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1有交点,则下列表述正确的是(  )
A.p是假命题,其否定是:?k∈(2,+∞),直线y=kx与双曲线$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1有交点
B.p是真命题,其否定是:?k∈(0,2),直线y=kx与双曲线$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1无交点
C.p是假命题,其否定是:?k∈(0,2),直线y=kx与双曲线$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1无交点
D.p是真命题,其否定是:?k∈(2,+∞),直线y=kx与双曲线$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1无交点

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.执行如图的程序框图,如果输出结果为2,则输入的x=(  )
A.0B.2C.4D.0或4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{a{x}^{2}+x-a}{{x}^{2}-x+1}$,a∈R,求不等式f(x)>1的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在等比数列{an}中,若a6-a5=567,a2-a1=7,则Sn=$\frac{7}{4}$(3n-1)或$\frac{7}{16}$((-3)n-1).

查看答案和解析>>

同步练习册答案