分析 根据等比数列的通项公式和等比数列的前n项和公式计算即可.
解答 解:设公比为q,由a6-a5=567,a2-a1=7,得$\left\{\begin{array}{l}{{a}_{1}{q}^{5}-{a}_{1}{q}^{4}=567}\\{{a}_{1}q-{a}_{1}=7}\end{array}\right.$,
解得q=3,a1=$\frac{7}{2}$或q=-3,a1=-$\frac{7}{4}$,
当q=3,a1=$\frac{7}{2}$时,Sn=$\frac{\frac{7}{2}(1-{3}^{n})}{1-3}$=$\frac{7}{4}$(3n-1),
q=-3,a1=-$\frac{7}{4}$时,Sn=$\frac{-\frac{7}{4}(1-(-3)^{n})}{1+3}$=$\frac{7}{16}$((-3)n-1),
故答案为:$\frac{7}{4}$(3n-1)或$\frac{7}{16}$((-3)n-1).
点评 本题考查了等比数列的通项公式和等比数列的前n项和公式,培养了学生的计算能力,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com