精英家教网 > 高中数学 > 题目详情
如图,在直三棱柱ABC-A1B1C1中,AB=AC=1,AA1=2,E、F分别是棱B1C1、B1B的中点,H在棱CC1上,且AB⊥AH.
(Ⅰ)求证:AB⊥平面AA1C1C;
(Ⅱ)求三棱锥A1-B1EF的体积.
考点:直线与平面垂直的判定,棱柱、棱锥、棱台的体积
专题:综合题,空间位置关系与距离
分析:(Ⅰ)证明AB⊥平面AA1C1C,只需证明AA1⊥AB,AB⊥AH;
(Ⅱ)求三棱锥A1-B1EF的体积,只需求VF-A1B1E
解答: (Ⅰ)证明:∵在直三棱柱ABC-A1B1C1中,AA1⊥平面ABC
∴AA1⊥AB,…(2分)
又∵AB⊥AH,AA1∩AH=A,∴AB⊥平面AA1C1C…(5分)
(Ⅱ)解:由(Ⅰ)知:∠B1A1C1=90°
∵AB=AC=1,BB1=2,∴S△A1B1C1=
1
2
•1•1
=
1
2

∵E、F分别是棱B1C1、B1B的中点,BB1=2,
SA1B1E=
1
4
,B1F=1…(8分)
又∵BB1⊥平面A1B1C1
∴三棱锥A1-B1EF的体积为VF-A1B1E=
1
3
1
4
•1
=
1
12
…(12分)
点评:本小题主要考查直线和直线、直线和平面的垂直关系、几何体的体积等基础知识,考查空间想象能力、运算求解能力、推理论证能力,考查了数形结合和化归与转化的数学思想方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列命题中为真命题的是(  )
A、?x∈R,x2+1<0
B、?x∈Z,3x+1是整数
C、?x∈R,|x|>3
D、?x∈Q,x2∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:

图中阴影部分区域所表示的不等式组是(  )
A、
x+y≤5
2x+y≥4
B、
x+y≤5
2x+y≤4
C、
x+y≥5
2x+y≤4
D、
x+y≥5
2x+y≥4

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,若S3=9,S9=36,则a7+a8+a9等于(  )
A、15B、12C、36D、27

查看答案和解析>>

科目:高中数学 来源: 题型:

复数z=m2+5m+6+(m2-2m-15)i.
(Ⅰ)实数m取什么数值时,复数z为纯虚数;
(Ⅱ)当m=-4时,复数z0=z+a+(a-5)i(a∈R),求复数z0的模的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,F1、F2是离心率为
2
2
的椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点,直线l:x=-1将线段F1F2分成两段,其长度之比为1:3.设A、B是椭圆C上的两个动点,线段AB的中垂线与椭圆C交于P、Q两点,线段AB的中点M在直线l上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求
F2P
F2Q
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙、丙三人独立破译一种密码,他们破译成功的概率分别为
1
2
3
5
3
4
求:
(1)三人同时破译,恰有一人破译成功的概率;
(2)三人同时破译,能破译成功的概率;
(3)要使破译成功的概率不小于95%,至少需要丙这样的人多少个?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(x+
3
3x
n的展开式中,各项系数的和与其二项式系数的和之比为64.
(1)求含x2的项的系数;
(2)求展开式中所有的有理项;
(3)求展开式中系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个顶点A(-3,0),B(2,1),C(-2,3).求:
(1)BC边上的中线AD所在的直线方程;
(2)BC边的垂直平分线DE所在的直线方程.

查看答案和解析>>

同步练习册答案