分析 (1)由焦点坐标确定出c的值,根据椭圆的性质列出a与b的方程,再将P点坐标代入椭圆方程列出关于a与b的方程,联立求出a与b的值,确定出椭圆方程即可.
(2)由题意:确定出C1的方程,设点P(x1,y1),M(x2,y2),N(x3,y3),根据M,N不在坐标轴上,得到直线PM与直线OM斜率乘积为-1,确定出直线PM的方程,同理可得直线PN的方程,进而确定出直线MN方程,求出直线MN与x轴,y轴截距m与n,即可确定出所求式子的值为定值.
(3)依题意可得符合要求的圆E,即为过点F,P1,P2的三角形的外接圆.所以圆心在x轴上.根据题意写出圆E的方程.由于圆的存在必须要符合,椭圆上的点到圆E距离的最小值是|P1E|,结合图形可得圆心E在线段P1P2上,半径最小.又由于点F已知,即可求得结论.
解答 解:(1)∵椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的右焦点为F(1,0),且点P(1,$\frac{3}{2}$)在椭圆C上;
∴$\left\{\begin{array}{l}{c=1}\\{\frac{1}{{a}^{2}}+\frac{9}{4{b}^{2}}=1}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解得a=2,b=$\sqrt{3}$,
∴椭圆C的标准方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.
(2)由题意:C1:$\frac{{x}^{2}}{4}$+$\frac{3{y}^{2}}{4}$=1,
设点P(x1,y1),M(x2,y2),N(x3,y3),
∵M,N不在坐标轴上,∴kPM=-$\frac{1}{{k}_{OM}}$=-$\frac{{x}_{2}}{{y}_{2}}$,
∴直线PM的方程为y-y2=-$\frac{{x}_{2}}{{y}_{2}}$(x-x2),
化简得:x2x+y2y=$\frac{4}{3}$,①,
同理可得直线PN的方程为x3x+y3y=$\frac{4}{3}$,②,
把P点的坐标代入①、②得$\left\{\begin{array}{l}{{x}_{2}{x}_{1}+{y}_{2}{y}_{1}=\frac{4}{3}}\\{{x}_{3}{x}_{1}+{y}_{3}{y}_{1}=\frac{4}{3}}\end{array}\right.$,
∴直线MN的方程为x1x+y1y=$\frac{4}{3}$,
令y=0,得m=$\frac{4}{3{x}_{1}}$,令x=0得n=$\frac{4}{3{y}_{1}}$,
∴x1=$\frac{4}{3m}$,y1=$\frac{4}{3n}$,
又点P在椭圆C1上,
∴($\frac{4}{3m}$)2+3($\frac{4}{3n}$)2=4,
则$\frac{1}{3{m}^{2}}$+$\frac{1}{{n}^{2}}$=$\frac{3}{4}$为定值.
(3)由椭圆的对称性,可以设P1(m,n),P2(m,-n),点E在x轴上,设点E(t,0),
则圆E的方程为:(x-t)2+y2=(m-t)2+n2,
由内切圆定义知道,椭圆上的点到点E距离的最小值是|P1E|,
设点M(x,y)是椭圆C上任意一点,则|ME|2=(x-t)2+y2=$\frac{3}{4}{x}^{2}-2tx+{t}^{2}+1$,
当x=m时,|ME|2最小,∴m=-$\frac{-2t}{3}=\frac{4t}{3}$,③,
又圆E过点F,∴(-$\sqrt{3}-t$)2=(m-t)2+n2,④
点P1在椭圆上,∴${n}^{2}=1-\frac{{m}^{2}}{4}$,⑤
由③④⑤,解得:t=-$\frac{\sqrt{3}}{2}$或t=-$\sqrt{3}$,
又t=-$\sqrt{3}$时,m=-$\frac{4\sqrt{3}}{3}$<-2,不合题意,
综上:椭圆C存在符合条件的内切圆,点E的坐标是(-$\frac{\sqrt{3}}{2}$,0).
点评 本题考查了直线与圆锥曲线的综合问题,椭圆的标准方程,韦达定理,以及椭圆的简单性质,熟练掌握椭圆的简单性质是解本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | S>384,i=i+1 | B. | S≥384,i=i+2 | C. | S>3840,i=i+1 | D. | S≥3840,i=i+2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{4}$ | B. | $\frac{5}{4}$ | C. | $\frac{3}{4}$或$\frac{5}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com