精英家教网 > 高中数学 > 题目详情
14.${({2x-\frac{1}{{\sqrt{x}}}})^6}$的二项展开式中的常数项为60.

分析 利用二项式的通项公式即可得出.

解答 解:二项式${({2x-\frac{1}{{\sqrt{x}}}})^6}$的展开式的通项公式为Tr+1=C6r(2x)6-r(-$\frac{1}{\sqrt{x}}$)r=(-1)rC6r26-rx${\;}^{6-\frac{3}{2}r}$,
令6-$\frac{3}{2}$r=0,解得r=4,
∴二项式的展开式中的常数项为(-1)4C6422=60,
故答案为:60

点评 本题考查了二项式的通项公式、常数项的求法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知i是虚数单位,若$z=\frac{a+i}{1+i}(a∈R)$为纯虚数,则a=(  )
A.-1B.1C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,梯形ABCD,|$\overrightarrow{DA}$|=2,∠CDA=$\frac{π}{3}$,$\overrightarrow{DA}$=2$\overrightarrow{CB}$,E为AB中点,$\overrightarrow{DP}$=λ$\overrightarrow{DC}$(0≤λ≤1).
(Ⅰ)当λ=$\frac{1}{3}$,用向量$\overrightarrow{DA}$,$\overrightarrow{DC}$表示的向量$\overrightarrow{PE}$;
(Ⅱ)若|$\overrightarrow{DC}$|=t(t为大于零的常数),求|$\overrightarrow{PE}$|的最小值并指出相应的实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知等比数列{an}的第2项、第5项分别为二项式(2x+1)5展开式的第5项、第2项的系数.
(1)求数列{an}的通项公式;
(2)记数列{an}的前n项和为Sn,若存在实数λ,使$\frac{λ}{{2{a_n}}}>\frac{1}{a_n}-\frac{1}{S_n}$恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知直线l与函数$f(x)=ln({\sqrt{e}x})-ln({1-x})$的图象交于A,B两点,若AB中点为点$P({\frac{1}{2},m})$,则m的大小为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数$y={log_a}^{(4x-1)}$,(a>0且a≠1)图象必过的定点是$(\frac{1}{2},0)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)(x∈R)满足f(1+x)=f(3-x),若函数y=|x2-4x-3|与y=f(x) 图象的交点为(x1,y1),(x2,y2),…,(xm,ym),则$\sum_{i=1}^{m}{x}_{i}$=(  )
A.0B.mC.2mD.4m

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),O是坐标原点,F1,F2分别为其左右焦点,|F1F2|=2$\sqrt{3}$,M是椭圆上一点,∠F1MF2的最大值为$\frac{2}{3}$π.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l与椭圆C交于P,Q两点,且OP⊥OQ,
(i)求证:$\frac{1}{{{{|{OP}|}^2}}}+\frac{1}{{{{|{OQ}|}^2}}}$为定值;
(ii)求△OPQ面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=x3+ax2-9x-1(a<0),若曲线y=f(x)在各点处的切线斜率的最小值是-12,求:
(1)a的值;
(2)函数f(x)的单调区间.

查看答案和解析>>

同步练习册答案