分析 (Ⅰ)由题意即可求得a=2,b=1,即可求得椭圆方程;
(Ⅱ)(i)分类讨论,当OP和OQ的斜率存在时,设OP和OQ方程,代入椭圆方程,求得P和Q点坐标,即可求得$\frac{1}{{{{|{OP}|}^2}}}+\frac{1}{{{{|{OQ}|}^2}}}=\frac{1}{{{x_1}^2+{y_1}^2}}+\frac{1}{{{x_2}^2+{y_2}^2}}=\frac{5}{4}$,当OP,OQ斜率一个为0,一个不存在时,则$\frac{1}{{{{|{OP}|}^2}}}+\frac{1}{{{{|{OQ}|}^2}}}=\frac{1}{4}+\frac{1}{1}=\frac{5}{4}$;
(ii)分类讨论,由(i)可知由求得丨OP丨及丨OQ丨,根据三角形的面积公式及基本不等式的性质,即可求得△OPQ面积的最小值.
当OP,OQ斜率一个为0,一个不存在时,S△OPQ=1,即可求得△OPQ面积的最小值.
解答 解:(Ⅰ)由题意得,2c=|F1F2|=2$\sqrt{3}$,c=$\sqrt{3}$,
当M位于上下端点时,∠F1MF2的最大,则,∠F1MO=$\frac{π}{3}$,
则a=2,b=1,
∴椭圆方程为:$\frac{x^2}{4}+{y^2}=1$…(3分)
(Ⅱ)i)当OP,OQ斜率都存在且不为0时,设lOP:y=kx,P(x1,y1),Q(x2,y2),
由$\left\{\begin{array}{l}y=kx\\ \frac{x^2}{4}+{y^2}=1\end{array}\right.$,消y得${x_1}^2=\frac{4}{{1+4{k^2}}}$,${y_1}^2={k^2}{x_1}^2=\frac{{4{k^2}}}{{1+4{k^2}}}$
同理得${x_2}^2=\frac{{4{k^2}}}{{4+{k^2}}}$,${y_2}^2=\frac{1}{k^2}{x_2}^2=\frac{4}{{{k^2}+4}}$,故$\frac{1}{{{{|{OP}|}^2}}}+\frac{1}{{{{|{OQ}|}^2}}}=\frac{1}{{{x_1}^2+{y_1}^2}}+\frac{1}{{{x_2}^2+{y_2}^2}}=\frac{5}{4}$,
当OP,OQ斜率一个为0,一个不存在时,得$\frac{1}{{{{|{OP}|}^2}}}+\frac{1}{{{{|{OQ}|}^2}}}=\frac{1}{4}+\frac{1}{1}=\frac{5}{4}$,
综上得$\frac{1}{{{{|{OP}|}^2}}}+\frac{1}{{{{|{OQ}|}^2}}}=\frac{5}{4}$,得证(未讨论斜率这扣1分) …(8分)
ii) 当OP,OQ斜率都存在且不为0时:
由上面所求可知:$|{OP}|=x_1^2+y_1^2=\frac{{4+4{k^2}}}{{1+4{k^2}}}$,$|{OQ}|=x_2^2+y_2^2=\frac{{4+4{k^2}}}{{4+{k^2}}}$,
${S_{△OPQ}}=\frac{1}{2}×|{OP}|×|{OQ}|=\frac{1}{2}\sqrt{\frac{{4+4{k^2}}}{{1+4{k^2}}}×\frac{{4+4{k^2}}}{{4+{k^2}}}}≥2\sqrt{\frac{{{{(1+{k^2})}^2}}}{{{{(\frac{{1+4{k^2}+4+{k^2}}}{2})}^2}}}}≥\frac{4}{5}$,…(10分)
当且仅当1+4k2=4+k2,则k2=1,k=±1时取等号 …(11分)
当OP,OQ斜率一个为0,一个不存在时,S△OPQ=1
综上S△OPQ的最小值为$\frac{4}{5}$(未讨论斜率这扣(1分) ) …(12分)
另解:由$\frac{1}{{{{|{OP}|}^2}}}+\frac{1}{{{{|{OQ}|}^2}}}=\frac{5}{4}⇒\frac{5}{4}≥2•\frac{1}{{|{OP}|}}•\frac{1}{{|{OQ}|}}⇒|{OP}||{OQ}|≥\frac{8}{5}⇒{S_{△OPQ}}≥\frac{4}{5}$
当且仅当|OP|=|OQ|时取等号 综上S△OPQ的最小值为$\frac{4}{5}$…(12分)
点评 本题考查椭圆的标准方程及简单几何性质,直线与椭圆的位置关系,考查韦达定理,基本不等式的性质,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1或$±\sqrt{2}$ | B. | ±1 | C. | 1或$\sqrt{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{a}$•|$\overrightarrow{a}$|=$\overrightarrow{a}$2 | B. | ($\overrightarrow{a}$•$\overrightarrow{b}$)2=$\overrightarrow{a}$2•$\overrightarrow{b}$2 | C. | ($\overrightarrow{a}$•$\overrightarrow{b}$)$\overrightarrow{c}$=$\overrightarrow{a}$($\overrightarrow{b}$•$\overrightarrow{c}$) | D. | |$\overrightarrow{a}$•$\overrightarrow{b}$|≤|$\overrightarrow{a}$||$\overrightarrow{b}$| |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com