精英家教网 > 高中数学 > 题目详情
13.$\overrightarrow{a}$,$\overrightarrow{b}$都为向量,则下列式子正确的是(  )
A.$\overrightarrow{a}$•|$\overrightarrow{a}$|=$\overrightarrow{a}$2B.($\overrightarrow{a}$•$\overrightarrow{b}$)2=$\overrightarrow{a}$2•$\overrightarrow{b}$2C.($\overrightarrow{a}$•$\overrightarrow{b}$)$\overrightarrow{c}$=$\overrightarrow{a}$($\overrightarrow{b}$•$\overrightarrow{c}$)D.|$\overrightarrow{a}$•$\overrightarrow{b}$|≤|$\overrightarrow{a}$||$\overrightarrow{b}$|

分析 根据向量数量积的公式分别进行判断即可.

解答 解:A.$\overrightarrow{a}$•|$\overrightarrow{a}$|是向量,$\overrightarrow{a}$2是常数,方程不成立,
B.($\overrightarrow{a}$•$\overrightarrow{b}$)2=$\overrightarrow{a}$2•$\overrightarrow{b}$2.cos2<$\overrightarrow{a}$,$\overrightarrow{b}$>,则当两个向量不共线时,方程不成立,
C.($\overrightarrow{a}$•$\overrightarrow{b}$)$\overrightarrow{c}$与$\overrightarrow{c}$共线,$\overrightarrow{a}$($\overrightarrow{b}$•$\overrightarrow{c}$)与$\overrightarrow{a}$共线,则方程不成立,
D.|$\overrightarrow{a}$•$\overrightarrow{b}$|=|$\overrightarrow{a}$|•|$\overrightarrow{b}$||cos<$\overrightarrow{a}$,$\overrightarrow{b}$>|≤|$\overrightarrow{a}$||$\overrightarrow{b}$|,故D正确
故选:D.

点评 本题主要考查与向量有关的命题的真假判断,根据向量数量积的公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),O是坐标原点,F1,F2分别为其左右焦点,|F1F2|=2$\sqrt{3}$,M是椭圆上一点,∠F1MF2的最大值为$\frac{2}{3}$π.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l与椭圆C交于P,Q两点,且OP⊥OQ,
(i)求证:$\frac{1}{{{{|{OP}|}^2}}}+\frac{1}{{{{|{OQ}|}^2}}}$为定值;
(ii)求△OPQ面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=x3+ax2-9x-1(a<0),若曲线y=f(x)在各点处的切线斜率的最小值是-12,求:
(1)a的值;
(2)函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知角A是△ABC的一个内角,若sin A+cos A=$\frac{3}{5}$,则sinA-cosA等于$\frac{{\sqrt{41}}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.定义在实数域上的偶函数f(x)对于?x∈R,均满足条件f(x+2)=f(x)+f(1),且当x∈[2,3]时,f(x)=-2x2+12x-18,若函数y=f(x)-loga(|x|+1)在(0,+∞)上至少有5个零点,则a的取值范围是(  )
A.(0,$\frac{\sqrt{2}}{2}$)B.(0,$\frac{\sqrt{3}}{3}$)C.(0,$\frac{\sqrt{5}}{5}$)D.(0,$\frac{\sqrt{6}}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.$tan(-\frac{π}{4})$=(  )
A.1B.-1C.$\frac{{\sqrt{2}}}{2}$D.$-\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x2+ax+b.
(Ⅰ)若函数f(x)的图象过点(1,4)和(2,5),求f(x)的解析式;
(Ⅱ)若函数f(x)的区间[1,2]不单调,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=lnx,g(x)=$\frac{a}{x}$(a>0),设F(x)=f(x)+g(x).
(1)求函数F(x)的单调区间;
(2)若以函数y=F(x)(x∈(0,3])图象上任意一点P(x0,y0)为切点的切线的斜率k≤$\frac{1}{2}$恒成立,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.不等式x2+3x-4<0的解集是(-4,1).

查看答案和解析>>

同步练习册答案