精英家教网 > 高中数学 > 题目详情
19.(B类题)如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=$\sqrt{3}$AB,则下列结论正确的是(  )
A.PB⊥ADB.平面PAB⊥平面PBC
C.直线BC∥平面PAED.△PFB为等边三角形

分析 利用题中条件,逐一分析答案,通过排除和筛选,得到正确答案.

解答 解:∵AD与PB在平面的射影AB不垂直,
∴A不成立,
又平面PAB⊥平面PAE,
∴平面PAB⊥平面PBC也不成立;BC∥AD∥平面PAD,
∴直线BC∥平面PAE也不成立.
∵PA=$\sqrt{3}$AB,PA⊥平面ABC
∴PF=PB,BF=$\sqrt{3}$AB
∴△PFB为等边三角形,
故选:D.

点评 本题考查直线与平面成的角、直线与平面垂直的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.在△ABC中,|$\overrightarrow{AB}$+$\overrightarrow{AC}$|=|$\overrightarrow{AB}$-$\overrightarrow{AC}$|,AC=1,BC=$\sqrt{3}$,M是边BC上靠近C的一个四等分点,若N是BC边上的动点,则$\overrightarrow{AM}$•$\overrightarrow{AN}$的取值范围是[$\frac{1}{2}$,$\frac{3}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设直线y=kx与椭圆$\frac{x^2}{2}+{y^2}=1$相交于A,B两点,分别过A,B向x轴作垂线,若垂足恰为椭圆的两个焦点,则k=(  )
A.±1B.$±\frac{{\sqrt{2}}}{2}$C.$±\frac{1}{2}$D.$±\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示,AE,DF是圆柱的两条母线,过AD作圆柱的截面交下底面于BC,且AD=BC,圆柱的高为2,底面半径为$\sqrt{3}$
(Ⅰ)求证:平面AEB∥平面DFC
(Ⅱ)求证:BC⊥AB
(Ⅲ)求四棱锥E-ABCD体积最大时AD的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示,正方形ABCD所在平面与圆O所在平面相交于CD,线段CD为圆O的弦,AE垂直于圆O所在平面,垂足E是圆O上异于C,D的点,AE=3,圆O的直径为9.
(Ⅰ)求证:平面ABCD⊥平面ADE; 
(Ⅱ)求三棱锥D-ABE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数F(x)=($\frac{lnx}{x}$)2+(a-1)$\frac{lnx}{x}$+1-a有三个不同的零点x1,x2,x3(其中x1<x2<x3),则(1-$\frac{ln{x}_{1}}{{x}_{1}}$)2(1-$\frac{ln{x}_{2}}{{x}_{2}}$)(1-$\frac{ln{x}_{3}}{{x}_{3}}$)的值为(  )
A.1-aB.a-1C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若不等式x2+ax+1≥0对于一切x∈(0,$\frac{1}{2}$)恒成立,则a的取值范围是(  )
A.a≥0B.a≥-2C.a≥-$\frac{5}{2}$D.a≥-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知A={x|-x2+3x-2>0},B={x|x2-(a+1)x-a≤0}.
(1)化简集合B;
(2)若A⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若{bn}满足约束条件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}\right.$,则z=x+2y的最小值为(  )
A.3B.4C.7D.2

查看答案和解析>>

同步练习册答案