分析 (Ⅰ)逐一判定函数是否满足:对任意x1,x2∈U都有|f(x1)-f(x2)|<1即可.
(Ⅱ)依题意,若f(x)为storm函数,有f(x)max-f(x)min<1,x∈[-1,1],分类求出$f(x)=\frac{1}{2}{x^2}-bx+1$的最值即可.
解答 解:(Ⅰ)①y=2x-1+1是[-1,1]内storm函数,理由:y=2x-1+1在[-1,1]上单调增,且${y_{max}}=2,{y_{min}}={2^{-2}}+1=\frac{5}{4}$,
∵$|{y_{max}}-{y_{min}}|=\frac{3}{4}<1$,∴满足?x1,x2∈U,|f(x1)-f(x2)|<1;(3分)
②$y=\frac{1}{2}{x^2}+1$是[-1,1]内storm函数,理由:$y=\frac{1}{2}{x^2}+1$在[-1,1]上,且${y_{max}}=\frac{3}{2},{y_{min}}=1$,
∵$|{y_{max}}-{y_{min}}|=\frac{1}{2}<1$,∴满足?x1,x2∈U,|f(x1)-f(x2)|<1;(3分)
(Ⅱ)依题意,若f(x)为storm函数,有f(x)max-f(x)min<1,x∈[-1,1],$f(x)=\frac{1}{2}{x^2}-bx+1$的对称轴为x=b.
1°若b<-1,$f{(x)_{max}}=f(1)=\frac{1}{2}-b+1,f{(x)_{min}}=f(-1)=\frac{1}{2}+b+1$,
∴$-2b<1,b>-\frac{1}{2}$,无解;
2°若-1≤b<0,$f{(x)_{max}}=f(1)=\frac{1}{2}-b+1,f{(x)_{min}}=f(b)=\frac{1}{2}{b^2}-{b^2}+1$,
∴${b^2}-2b-1<0,1-\sqrt{2}<b<0$;
3°若0≤b≤1,$f{(x)_{max}}=f(-1)=\frac{1}{2}+b+1,f{(x)_{min}}=f(b)=\frac{1}{2}{b^2}-{b^2}+1$,
∴${b^2}+2b-1<0,0≤b<\sqrt{2}-1$;
4°若b>1,$f{(x)_{max}}=f(-1)=\frac{1}{2}+b+1,f{(x)_{min}}=f(1)=\frac{1}{2}-b+1$,∴$2b<1,b<\frac{1}{2}$,无解.
综上,b的取值范围为$(1-\sqrt{2},\sqrt{2}-1)$.(6分)
点评 本题考查了新定义问题,及分析问题的能力、分类讨论思想的应用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (2x+2)5 | B. | 2x5 | C. | (2x-1)5 | D. | 32x5 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $k≤-4或k≥\frac{3}{4}$ | B. | $-4≤k≤\frac{3}{4}$ | C. | $k≤-\frac{3}{4}或k≥4$ | D. | $-\frac{15}{4}≤k≤4$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com