精英家教网 > 高中数学 > 题目详情
某工厂经过技术改造后,降低了能源消耗,经统计该厂某种产品的产量x(单位:吨)与相应的生产能耗y(单位:吨)有如下几组样本数据:
x 3 4 5 6
y 2.5 3 4 4.5
根据相关性检验,这组样本数据具有线性相关关系,通过线性回归分析,求得回归直线的斜率为0.7.已知该产品的年产量为10吨,则该工厂每年大约消耗的汽油为多少吨?
考点:线性回归方程
专题:计算题,概率与统计
分析:求出横标和纵标的平均数,写出样本中心点,把样本中心点代入线性回归方程,得到关于a的方程,解方程,再令x=10即可得出答案.
解答: 解:∵
.
x
=
1
4
(3+4+5+6)=4.5,
.
y
=
1
4
(2.5+3+4+4.5)=3.5,
∴这组数据的样本中心点是(4.5,3.5),
把样本中心点代入回归直线方程
y
=0.7x+a,
∴3.5=4.5×0.7+a,
∴a=0.35,
那么这组数据的回归直线方程是
y
=0.7x+0.35,
当x=10时,y=0.7×10+0.35=7.35,即该工厂每年大约消耗的汽油为7.35吨.
点评:本题考查线性回归方程,解题的关键是线性回归直线一定过样本中心点,这是求解线性回归方程的步骤之一.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a=
2
,b=
7
-
3
,c=
6
-
2
,则a,b,c的大小关系是(  )
A、a>b>c
B、a>c>b
C、b>a>c
D、b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:

如图选项中的长方体中由如图的平面图形(其中,若干矩形被涂黑)围成的是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,角A、B、C所对的边分别为a、b、c,且tan
A-B
2
=
a-b
a+b
,判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

在四棱锥P-ABCD中,底面ABCD为正方形,PA⊥平面ABCD,点E、F分别是PD、BC的中点.
(1)求证:EF∥平面PAB;
(2)求证:AD⊥PB.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}为等差数列,且a2=-4,S7=0
(1)求数列{an}的通项公式;
(2)若等比数列{bn}满足b1=-4,b2=a1+a2+a3,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
.
a
=(sin(x+
π
6
),1),
b
=(4,4cosx-
3

(I)若
a
b
,求sin(x+
3
)的值;
(II)设f(x)=
a
b
,若α∈[0,
π
2
],f(α-
π
6
)=2
3
,求cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)在定义域[-1,1]上是奇函数,又是减函数.
(1)求证:对任意x1、x2∈[-1,1],有[f(x1)+f(x2)]•(x1+x2)≤0;
(2)若f(2-a2)>0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某地为了建立幸福指标体系,决定用分层抽样的方法从公务员、工人、自由职业者三个群体的相关人员中,抽取若干人组成研究小组,有关数据见如表(单位:人)
相关人员数 抽取人数
公务员 36 x
工人 54 y
自由职业者 72 4
(Ⅰ)求研究小组的总人数;
(Ⅱ)若从研究小组的公务员和工人中共随机选2人,求其中恰好有1人来自工人的概率.

查看答案和解析>>

同步练习册答案