精英家教网 > 高中数学 > 题目详情
(1)求以原点为顶点,坐标轴为对称轴,并且经过P(-2,-4)的抛物线方程.
(2)设抛物线y2=2px(p>0)的焦点为F,点A(0,2).若线段FA的中点B在抛物线上,则B到该抛物线准线的距离是多少?
考点:抛物线的简单性质
专题:综合题,圆锥曲线的定义、性质与方程
分析:(1)对称轴分为是x轴和y轴两种情况,分别设出标准方程为y2=2px和x2=-2py,然后将M点坐标代入即可求出抛物线标准方程;
(2)根据抛物线方程可表示出焦点F的坐标,进而求得B点的坐标代入抛物线方程求得p,则B点坐标和抛物线准线方程可求,进而求得B到该抛物线准线的距离.
解答: 解:(1)抛物线的顶点在坐标原点,对称轴是x轴,并且经过点 (-2,-4),
设它的标准方程为y2=-2px(p>0)
∴16=4p,解得p=4,
∴y2=-8x.
抛物线的顶点在坐标原点,对称轴是y轴,并且经过点 (-2,-4),
设它的标准方程为x2=-2py(p>0)
∴4=-8p,
解得:p=-
1
2

∴x2=-y
综上所述,抛物线方程为:y2=-8x或x2=-y;
(2)依题意可知F坐标为(
p
2
,0)
∴B的坐标为(
p
4
,1)代入抛物线方程解得p=
2

∴抛物线准线方程为x=-
2
2

∴点B到抛物线准线的距离为
2
4
+
2
2
=
3
2
4

则B到该抛物线焦点的距离为
3
2
4
点评:本题考查了抛物线的标准方程及几何性质,解题过程中要注意对称轴是x轴和y轴两种情况作答,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知,如图,AB是圆O的直径,AC切⊙O于点A,AC=AB,CO交⊙O于点P,CO的延长线交⊙O于点F,BP的延长线交AC于点E.
(Ⅰ)求证:FA∥BE:;
(Ⅱ)求证:
AP
PC
=
FA
AB

(Ⅲ)若⊙O的直径AB=2,求tan∠CPE的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=log 
1
2
(-x2+ax+3)在区间(-3,-2]上单调递减,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A={x|-1<x<8},B={x|x>4或x<-5},求A∩B、A∪B、∁RB.

查看答案和解析>>

科目:高中数学 来源: 题型:

A中学获得某名牌高校校长实名推荐名额1名,甲乙两位学生参加了学校组织的选拔培训,在培训期间,他们参加了5次测试,测试成绩茎叶图如图:
(1)从甲乙两人的成绩中各随机抽取一个,求甲成绩比乙高的概率;
(2)分别计算甲乙两人成绩的平均数和方差,从统计学的角度考虑,你认为推荐哪位学生更合适?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的公差为负数,若a1+a2+a3=15,a1a2a3=80,则a8+a9+a10=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图(1)、(2)、(3)、(4)四个图案,每个图案都是由小正方形拼成,现按同样的规律 (小正方形的摆放规律相同)进行拼图,设第n个图形包含f(n)个小正方形.
(1)f(6)=
 
;(2)f(n)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下列命题中:
(1)若
a
b
=
a
c
,则
b
=
c

(2)向量
a
=(2,-3),
b
=(
1
2
,-
3
4
),不能作为平面内所有向量的一组基底;
(3)若向量
a
=(λ,2),
b
=(-4,-2)夹角为钝角,则λ的取值范围为λ>-1;
(4)若
a
b
a
c
,则
b
c

(5)若三角形ABC中
AB
BC
>0,则三角形ABC为钝角三角形.
其中正确的命题序号为
 
.(填上所有正确的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|log2(1-x)<1},B={y|y=x2},则A∩B=
 

查看答案和解析>>

同步练习册答案