精英家教网 > 高中数学 > 题目详情

已知函数),

(1)求函数的单调区间,并确定其零点个数;

(2)若在其定义域内单调递增,求的取值范围;

(3)证明不等式 ).

 

(1)当时,的减区间,的增区间,有且只有一个零点;当时,的增区间,的减区间,有且只有一个零点.

(2);(3)祥见解析.

【解析】

试题分析:(1)首先求出已知函数的导数,然后由导数为正(为负)求得函数的增(减)区间,结合函数的单调区间就可求得函数的零点的个数;注意分类讨论;(2)由在其定义域内单调递增,可知恒成立,从而就可利用二次函数的图象来求得字母的取值范围;或者分离参数将不等式的恒成立问题转化为函数的最值问题来加以解决;(3)观察所证不等式左右两边,联想已知的函数,由(2)可知 当时,内单调递增,而,所以当时,,即 , 则 即: ,然后再令n=1,2,3,…,n得到n个式子,将这n个式子相加就可得到所证不等式.

试题解析:(1) 1分

…2分

(i)若,则当时,;当时,

所以 的增区间,的减区间. 3分

极大值为

所以只有一个零点

(ii)若,则当时,;当时,

所以 的减区间,的增区间.

极小值为 4分

所以只有一个零点

综上所述,

时,的减区间,的增区间,有且只有一个零点;

时,的增区间,的减区间,有且只有一个零点. 5分

(2) …6分

在其定义域内单调递增,可知恒成立.

恒成立. 7分

(法一)由二次函数的图象(开口向上,过定点)可得 8分

,则 ,得

可以验证 当在其定义域内单调递增故 . 9分

(法二)分离变量

(当且仅当,即时取到等号)…8分

所以 , 则

可以验证 当在其定义域内单调递增,故 9分

(3)由(2)可知 当时,内单调递增,

所以当时,,即 10分

, 则 …11分

所以 , ,

以上个式子累加可得

12分

13分

). 14分

考点:1.利用函数的导数研究函数的单调性;2.函数的零点;3.函数与不等式的综合.

 

练习册系列答案
相关习题

科目:高中数学 来源:2015届广东省高二下学期期末考试文科数学试卷(解析版) 题型:选择题

设命题和命题,“”的否定是真命题,则必有( )

A.真 B.假 C.假 D.

 

查看答案和解析>>

科目:高中数学 来源:2015届广东省清远市高二下学期期末文科数学试卷(解析版) 题型:选择题

Sn是数列{an}的前n项和,,则,由此可以归纳出(  )

A. B.

C. D.

 

查看答案和解析>>

科目:高中数学 来源:2015届广东省高二下学期期末考试理科数学试卷(解析版) 题型:填空题

7颗颜色不同的珠子,可穿成 种不同的珠子圈.

 

查看答案和解析>>

科目:高中数学 来源:2015届广东省高二下学期期末考试理科数学试卷(解析版) 题型:选择题

某几何体是由直三棱柱与圆锥的组合体,其直观图和三视图如图所示,正视图为正方形,其中俯视图中椭圆的离心率为

A. B. C. D.

 

查看答案和解析>>

科目:高中数学 来源:2015届广东省高二下学期期末考试文科数学试卷(解析版) 题型:解答题

已知函数

(1)求函数的最小正周期;

(2)在中,角的对边分别为,且满足

的值.

 

查看答案和解析>>

科目:高中数学 来源:2015届广东省高二下学期期末考试文科数学试卷(解析版) 题型:选择题

分别是椭圆的左、右焦点,点在椭圆上,线段的中点在轴上,若,则椭圆的离心率为( )

A. B. C. D.

 

查看答案和解析>>

科目:高中数学 来源:2015届广东省梅州市高二下学期期中理科数学试卷(解析版) 题型:填空题

已知复数均是纯虚数,则

 

查看答案和解析>>

科目:高中数学 来源:2015届广东省高二下学期期中理科数学试卷(解析版) 题型:填空题

从如图所示的长方形区域内任取一个点则点取自阴影部分的概率为 。

(边界曲线方程为

 

查看答案和解析>>

同步练习册答案