【题目】已知四边形
为矩形,
,
为
的中点,将
沿
折起,得到四棱锥
,设
的中点为
,在翻折过程中,得到如下有三个命题:
①
平面
,且
的长度为定值
;
②三棱锥
的最大体积为
;
③在翻折过程中,存在某个位置,使得
.
其中正确命题的序号为__________.(写出所有正确结论的序号)
【答案】①②
【解析】
取
的中点
,连接
、
,证明四边形
为平行四边形,得出
,可判断出命题①的正误;由
为
的中点,可知三棱锥
的体积为三棱锥
的一半,并由平面
平面
,得出三棱锥
体积的最大值,可判断出命题②的正误;取
的中点
,连接
,由
,结合
得出
平面
,推出
得出矛盾,可判断出命题③的正误.
如下图所示:
![]()
对于命题①,取
的中点
,连接
、
,则
,
,
,由勾股定理得
,
易知
,且
,
、
分别为
、
的中点,所以,
,
四边形
为平行四边形,
,
,
平面
,
平面
,
平面
,命题①正确;
对于命题②,由
为
的中点,可知三棱锥
的体积为三棱锥
的一半,当平面
平面
时,三棱锥
体积取最大值,
取
的中点
,则
,且
,
平面
平面
,平面
平面
,
,
平面
,
平面
,
的面积为
,
所以,三棱锥
的体积的最大值为
,
则三棱锥
的体积的最大值为
,命题②正确;
对于命题③,
,
为
的中点,所以,
,
若
,且
,
平面
,
由于
平面
,
,事实上,易得
,
,
,由勾股定理可得
,这与
矛盾,命题③错误.
故答案为:①②.
科目:高中数学 来源: 题型:
【题目】气象意义上从春季进入夏季的标志为:“连续5天的日平均温度均不低于
”.现有甲、乙、丙三地连续5天的日平均温度的记录数据(记录数据都是正整数):
①甲地:5个数据的中位数为24,众数为22;
②乙地:5个数据的中位数为27,总体均值为24;
③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.8;
则肯定进入夏季的地区有( )
A. 0个 B. 1个 C. 2个 D. 3个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一种电路控制器在出厂时,每3件一等品应装成一箱,工人装箱时,不小心将2件二等品和1件一等品装入了一箱,为了找出该箱中的二等品,对该箱中的产品逐件进行测试,假设检测员不知道该箱产品中二等品的具体数量,求:
(1)仅测试2件就找到全部二等品的概率;
(2)测试的第2件产品是二等品的概率;
(3)到第3次才测试出全部二等品的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙、丁四个物体同时从某一点出发向同一个方向运动,其路程
关于时间
的函数关系式分别为
,
,
,
,有以下结论:
①当
时,甲走在最前面;
②当
时,乙走在最前面;
③当
时,丁走在最前面,当
时,丁走在最后面;
④丙不可能走在最前面,也不可能走在最后面;
⑤如果它们一直运动下去,最终走在最前面的是甲.
其中,正确结论的序号为 (把正确结论的序号都填上,多填或少填均不得分).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是一几何体的平面展开图,其中四边形ABCD为矩形,E,F分别为PA,PD的中点,在此几何体中,给出下面4个结论:
![]()
直线BE与直线CF异面;
直线BE与直线AF异面;
直线
平面PBC;
平面
平面PAD.
其中正确的结论个数为
![]()
A. 4个
B. 3个
C. 2个
D. 1个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知长度为
的线段
的两个端点
、
分别在
轴和
轴上运动,动点
满足
,设动点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)过点
且斜率不为零的直线
与曲线
交于两点
、
,在
轴上是否存在定点
,使得直线
与
的斜率之积为常数.若存在,求出定点
的坐标以及此常数;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2016高考新课标II,理15)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com