精英家教网 > 高中数学 > 题目详情
13.若函数f(x)是(0,+∞)上的单调函数,且对任意实数x∈(0,+∞),都有f[f(x)-log2x-1]=2,则f(8)=(  )
A.2B.3C.4D.5

分析 根据题意,由单调函数的性质,可得f(x)-log2x-1为定值,可以设t=f(x)-log2x-1,则f(x)=log2x+t+1,又由f(t)=2,即log2t+t+1=2,解可得t的值,可得f(x)的解析式,求出f(8)即可.

解答 解:根据题意,对任意的x∈(0,+∞),都有f[f(x)-log2x-1]=2,
又由f(x)是定义在(0,+∞)上的单调函数,
则f(x)-log2x-1为定值,
设t=f(x)-log2x-1,则f(x)=log2x+t+1,
又由f(t)=2,即log2t+t+1=2,
解可得,t=1;
则f(x)=log2x+2,
故f(8)=5,
故选:D.

点评 本题考查了求函数的解析式问题,考查指数函数的性质,求出f(x)的解析式是解题的关键,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.若函数f(x)=2sin2(ωx)+2$\sqrt{3}$sin(ωx+$\frac{π}{2}}$)-1(ω>0)的最小正周期为1,则ω=π,函数f(x)在区间[-$\frac{1}{6}$,$\frac{1}{4}}$]上的值域为[0,2$\sqrt{3}$-1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=cos(3x+φ)(0≤φ≤π)是奇函数,则φ的值为$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.给定下列函数:①f(x)=$\frac{1}{x}$   ②f(x)=-|x|③f(x)=-2x-1 ④f(x)=(x-1)2,满足“对任意x1,x2∈(0,+∞),当x1<x2时,都有f(x1)>f(x2)”的条件是(  )
A.①②③B.②③④C.①②④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)=x+$\frac{m}{x}$(m∈R).
(1)判断并证明f(x)的奇偶性;
(2)若m=4,证明f(x)是(2,+∞)上的增函数,并求f(x)在[-8,-2]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=asinx+bx${\;}^{\frac{1}{3}}}$-1,(a,b∈R),若f(lg$\frac{1}{2017}$)=2016,则f(lg2017)=(  )
A.-2016B.2016C.2018D.-2018

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x,x≥0}\\{4x-{x}^{2},x<0}\end{array}\right.$,若f(2a+1)>f(a-2),则实数a的取值范围是(-∞,-3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\left\{\begin{array}{l}{log_5}x,x>0\\{2^x},x≤0\end{array}$,则f(f($\frac{1}{25}$))=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.正方体ABCD-A1B1C1D1中,则正四面体D-A1BC1的表面积与正方体的表面积之比是(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

同步练习册答案