精英家教网 > 高中数学 > 题目详情
已知集合A={x|x2-4x-5≥0},集合B={x|2a≤x≤a+2}.
(1)若a=-1,求A∩B和A∪B;
(2)若A∩B=B,求实数a的取值范围.
考点:交集及其运算
专题:集合
分析:(1)由此能求出集合A={x|x2-4x-5≥0}={x|x≤-1或x≥5},从而能求出A∩B和A∪B.
(2)由A∩B=B,得B⊆A,由此能求出实数a的取值范围.
解答: 解:(1)a=1时,集合A={x|x2-4x-5≥0}={x|x≤-1或x≥5},
集合B={x|2a≤x≤a+2}={x|-2≤x≤1},
∴A∩B={x|-2≤x≤-1},
A∪B={x|x≤1或x≥5}.
(2)∵A∩B=B,∴B⊆A,
当B=∅时,2a>a+2,解得a>2;
当B≠∅时,
a≤2
a+2≤-1
a≤2
2a≥5

解得a≤-3.
综上,a>2或a≤-3.
点评:本题考查交集和并集的求法,是基础题,解题时要认真审题,注意不等式性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,若a2与a10的等差中项是-4,且a1•a6=14.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设f(n)=
2Sn-2an
n
(n∈N+),求f(n)最小值及相应的n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

当函数f(x)=2x+1+m的图象不过第二象限时,m的取值范围是(  )
A、m≥2B、m≤-2
C、m>2D、m<-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-1
2x+1

(1)判断函数f(x)的奇偶性,并证明.
(2)求函数f(x)的单调性及值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,若(a2+c2-b2)tanB=
3
ac,则角B的值为(  )
A、
π
6
B、
π
3
C、
π
6
6
D、
π
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

记函数f(x)=
1
2x-3
的定义域为集合M,函数g(x)=log3(x-3)的定义域为集合N.求:
(Ⅰ)集合M,N;       
(Ⅱ) 集合M∩N,M∪N.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={x|x2-4x-5>0},B={x|a≤x<a+4},若A?B.
(1)求∁RA值.
(2)求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若{1,a,
b
a
}={0,a2,a+b},则a2015+b2014的值为(  )
A、1或-1B、0C、1D、-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知长方体ABCD-A1B1C1D1中,AB=4
3
,AD=4
3
,AA1=4,求:
(1)A1B与DC所成的角;
(2)A1C1与AD所成的角;
(3)AC1与DD1所成的余弦值.

查看答案和解析>>

同步练习册答案