精英家教网 > 高中数学 > 题目详情
18.已知x,y满足约束条件$\left\{\begin{array}{l}x-y-2≤0\\ 5x-3y-12≥0\\ y≤3\end{array}\right.$当目标函数z=ax+by(a>0,b>0)在该约束条件下取得最小值1时,则$\frac{1}{3a}+\frac{2}{b}$的最小值为(  )
A.$4+2\sqrt{2}$B.$4\sqrt{2}$C.$3+2\sqrt{2}$D.$3+\sqrt{2}$

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数可得3a+b=1,再运用“1”的代换利用基本不等式求得$\frac{1}{3a}+\frac{2}{b}$的最小值.

解答 解:由约束条件$\left\{\begin{array}{l}x-y-2≤0\\ 5x-3y-12≥0\\ y≤3\end{array}\right.$作出可行域如图,

联立$\left\{\begin{array}{l}{x-y-2=0}\\{5x-3y-12=0}\end{array}\right.$,解得A(3,1),
化目标函数z=ax+by为$y=-\frac{a}{b}x+\frac{z}{b}$,
由图可知,当直线$y=-\frac{a}{b}x+\frac{z}{b}$过A时,直线在y轴上的截距最小,z有最小值为3a+b=1,
则$\frac{1}{3a}+\frac{2}{b}$=($\frac{1}{3a}+\frac{2}{b}$)(3a+b)=3+$\frac{b}{3a}+\frac{6a}{b}$$≥3+2\sqrt{2}$.
当且仅当a=$\frac{\sqrt{2}-1}{3}$,b=2-$\sqrt{2}$时取“=”.
故选:C.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法及数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.按照图如图所示的程序框图执行,若输出结果为s=31,则M处条件是(  )
A.k<32?B.k>32?C.k<16?D.k>16?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设数列{an}的各项都是正数,且对任意n∈N*,都有an2=2Sn-an,其中Sn为数列{an}的前n项和.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=2n+λ•3${\;}^{{a}_{n}}$(n∈N*),若使得对任意n∈N*,都有bn+1<bn成立,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点分别为F1(-c,0),F2(c,0),以线段F1F2为直径的圆与双曲线在第二象限的交点为P,若直线PF2与圆E:(x-$\frac{c}{2}$)2+y2=$\frac{{b}^{2}}{16}$相切,则双曲线的渐近线方程是(  )
A.y=±xB.y=±2xC.y=±$\sqrt{3}$xD.y=±$\sqrt{2}$x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知直线x+2y-1=0与直线2x+my+4=0平行,则m=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.水是地球上宝贵的资源,由于价格比较便宜在很多不缺水的城市居民经常无节制的使用水资源造成严重的资源浪费.某市政府为了提倡低碳环保的生活理念鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),[1,1.5),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.
(1)若全市居民中月均用水量不低于3吨的人数为3.6万,试估计全市有多少居民?并说明理由;
(2)若该市政府拟采取分层抽样的方法在用水量吨数为[1,1.5)和[1.5,2)之间选取7户居民作为议价水费价格听证会的代表,并决定会后从这7户家庭中按抽签方式选出4户颁发“低碳环保家庭”奖,设X为用水量吨数在[1,1.5)中的获奖的家庭数,Y为用水量吨数在[1.5,2)中的获奖家庭数,记随机变量Z=|X-Y|,求Z的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在平面直角坐标系xoy中,直线l:y=2x-4,圆C的半径为1,圆心在直线l上,若圆C上存在点M,且M在圆D:x2+(y+1)2=4上,则圆心C的横坐标a的取值范围是(  )
A.$[{\frac{3}{5},2}]$B.$[{0,\frac{12}{5}}]$C.$[{2-\frac{2}{5}\sqrt{5},2+\frac{2}{5}\sqrt{5}}]$D.$[{0,2-\frac{2}{5}\sqrt{5}}]∪[{2+\frac{2}{5}\sqrt{5},4}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知命题p:函数f(x)=x2-2ax+3在区间[-1,2]单调递增,命题q:函数g(x)=lg(x2+ax+4)定义域为R,若命题“p且q”为假,“p或q”为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知两曲线f(x)=2sinx,g(x)=acosx,$x∈(0\;,\;\;\frac{π}{2})$相交于点P.若两曲线在点P处的切线互相垂直,则实数a的值为$\frac{{2\sqrt{3}}}{3}$.

查看答案和解析>>

同步练习册答案