分析 (I)有题意可得an=f(n)=tn+b,利用定义判断{an}为等差数列,再代入前n项和公式得出Sn;
(II)列方程解出首项和公差,得出Sp+q和S2p+S2q,利用作差法证明结论.
解答 解:(I)c=0时,f(x)=tx+b
∵点(n,an)在函数y=f(x)的图象上,
∴an=f(n)=tn+b.
∴an-an-1=tn+b-[t(n-1)+b]=t,(n≥2)
∴{an}是首项是a1=t+b,公差为d=t的等差数列.
∴Sn=n(t+b)+$\frac{n(n-1)}{2}×t$=nb+$\frac{n(n+1)}{2}t$.
(Ⅱ)证明:∵a3=7,S4=24,∴$\left\{\begin{array}{l}{(t+b)+2t=7}\\{4(t+b)+6t=24}\end{array}\right.$
解得t=2,b=1.∴an=2n+1.
∴Sn=$\frac{3+2n+1}{2}×n$=n2+2n.
∴Sp+q=[(p+q)2+2(p+q)]=p2+q2+2pq+2p+2q,
$\frac{1}{2}$(S2p+S2q)=2p2+2p+2q2+2q,
∴Sp+q-$\frac{1}{2}$(S2p+S2q)=-p2-q2+2pq=-(p-q)2.
又p≠q,∴Sp+q-$\frac{1}{2}$(S2p+S2q)=-(p-q)2<0.
∴Sp+q<$\frac{1}{2}$(S2p+S2q).
点评 本题考查了等差数列的判断,等差数列的前n项和公式,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -240 | B. | -120 | C. | 0 | D. | 120 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{s}$=(1,0,1),$\overrightarrow{n}$=(1,0,-1) | B. | $\overrightarrow{s}$=(1,1,1),$\overrightarrow{n}$=(1,1,-2) | ||
| C. | $\overrightarrow{s}$=(2,1,1),$\overrightarrow{n}$=(-4,-2,-2) | D. | $\overrightarrow{s}$=(1,3,1),$\overrightarrow{n}$=(2,0,-1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (3,+∞) | B. | [$\frac{3}{2}$,3) | C. | (1,$\frac{3}{2}$) | D. | ($\frac{3}{2}$,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com