精英家教网 > 高中数学 > 题目详情

已知函数(为常数,是自然对数的底数),曲线在点处的切线与轴平行.
(Ⅰ)求的值;
(Ⅱ)求的单调区间;
(Ⅲ)设,其中的导函数.证明:对任意

(Ⅰ)1
(Ⅱ)在区间内为增函数;在内为减函数.
(Ⅲ)见解析.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,求曲线在点处的切线方程;
(2)求函数的单调区间;
(3)设函数.若至少存在一个,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知A,b是实数,1和-1是函数f(x)=x3+Ax2+b x的两个极值点.
(1)求A和b的值;
(2)设函数g(x)的导函数g′(x)=f(x)+2,求g(x)的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=aln x-ax-3(a∈R).
(1)若a=-1,求函数f(x)的单调区间;
(2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数g(x)=x3+x2(f′(x)是f(x)的导数)在区间(t,3)上总不是单调函数,求m的取值范围;
(3)求证:×…×<(n≥2,n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且在点
处的切线方程为.
(1)求的值;
(2)若函数在区间内有且仅有一个极值点,求的取值范围;  
(3)设为两曲线的交点,且两曲线在交点处的切线分别为.若取,试判断当直线轴围成等腰三角形时值的个数并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数() =,g ()=+
(1)求函数h ()=()-g ()的零点个数,并说明理由;
(2)设数列满足,证明:存在常数M,使得对于任意的,都有≤ .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)讨论的单调性.
(2)证明:,e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)试问函数能否在处取得极值,请说明理由;
(2)若,当时,函数的图像有两个公共点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

根据统计资料,某工艺品厂的日产量最多不超过20件,每日产品废品率与日产量(件)之间近似地满足关系式(日产品废品率).已知每生产一件正品可赢利2千元,而生产一件废品则亏损1千元.(该车间的日利润日正品赢利额日废品亏损额)
(1)将该车间日利润(千元)表示为日产量(件)的函数;
(2)当该车间的日产量为多少件时,日利润最大?最大日利润是几千元?

查看答案和解析>>

同步练习册答案