精英家教网 > 高中数学 > 题目详情
3.下列各命题中正确的是(  )
①若命题“p或q”为真命题,则命题“p”和命题“q”均为真命题;
②命题“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x”;
③“x=4”是“x2-3x-4=0”的充分不必要条件;
④命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0且n≠0”.
A.②③B.①②③C.①②④D.③④

分析 ①根据复合命题真假关系进行判断,
②根据特称命题的否定是全称命题进行判断,
③根据充分条件和必要条件的定义进行判断,
④根据否命题的定义进行判断.

解答 解:①若命题“p或q”为真命题,则命题“p”和命题“q”至少有一个为真命题;故①错误,
②命题“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x”;故②正确,
③由x2-3x-4=0得x=4或x=-1,
则“x=4”是“x2-3x-4=0”的充分不必要条件;故③正确,
④命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”故④错误,
故正确的是②③,
故选:A

点评 本题主要考查命题的真假判断,涉及复合命题的真假关系,含有量词的命题的否定以及四种命题,充分条件和必要条件的判断,涉及的知识点较多,综合性较强,但难度不大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知i为虚数单位,(2+i)•z=-1+2i,则复数z=(  )
A.$\frac{4}{3}$+iB.-iC.iD.$\frac{4}{3}$-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=x3-3x2+5在区间$[{1,\frac{5}{2}}]$上的最小值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=ax-lnx,g(x)=ex-ax,其中a为正实数,若f(x)在(1,+∞)上无最小值,且g(x)在(1,+∞)上是单调递增函数,则实数a的取值范围为[1,e].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=x3+$\frac{3}{x}$在(0,+∞)上的最小值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数$f(x)=2\sqrt{2}sin\frac{1}{8}xcos\frac{1}{8}x+2\sqrt{2}{cos^2}\frac{1}{8}x-\sqrt{2}$,x∈R.
(1)求函数f(x)的频率和初相;
(2)在△ABC中,角A、B、C所对边的长分别是a、b、c,若$f(A)=\sqrt{3}$,$C=\frac{π}{4}$,c=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在四棱锥P-ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=90°,AB=AD=AP=2,BC=1.
(1)求点A到平面PCD的距离;
(2)若点Q为线段BP的中点,求直线CQ与平面ADQ所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知圆心坐标为(-1,1),半径是2$\sqrt{3}$的圆的标准方程:(x+1)2+(y-1)2=12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若A,B是锐角三角形ABC的两个内角,则以下选项中正确的是(  )
A.sinA<sinBB.sinA<cosBC.tanAtanB>1D.tanAtanB<1

查看答案和解析>>

同步练习册答案