精英家教网 > 高中数学 > 题目详情
8.要建一个圆柱形无盖的粮仓,要求它的容积为500m3,问如何选择它的直径和高,才能使所用材料最省?

分析 设圆柱的底面半径,高,要求用料最省即圆柱的表面积最小,由题意可得表面积的表示式,利用导数做出函数的最值,并且看出取得最值时,自变量的取值.

解答 解:欲使材料最省,即为表面积最小,设圆柱面半径为R(m),高为h(m)
则h=$\frac{500}{π{R}^{2}}$
材料的面积S=πR2+2πR×$\frac{500}{π{R}^{2}}$=πR2+$\frac{1000}{R}$(R>0)
求导有S′=2πR-$\frac{1000}{{R}^{2}}$
令S'(R)=0得R=$\root{3}{\frac{500}{π}}$,此时h=$\root{3}{\frac{500}{π}}$,
得到函数在(0,$\root{3}{\frac{500}{π}}$)上单调递减,在($\root{3}{\frac{500}{π}}$,+∞)上单调递增,
∴当R=h=$\root{3}{\frac{500}{π}}$,2R=2$\root{3}{\frac{500}{π}}$时,所用的材料最省.

点评 本题考查函数模型的选择与应用,本题解题的关键是写出表面积的表示式,再利用导数求函数的最值,本题是一个中档题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图,已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,点A(0,$\sqrt{3}$)和点P都在椭圆C1上,椭圆C2方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=4.
(1)求椭圆C1的方程;
(2)过P作椭圆C1的切线l交椭圆C2于M,N两点,过P作射线PO交椭圆C2于Q点,设$\overrightarrow{OQ}$=λ$\overrightarrow{OP}$;
(i)求λ的值;
(ii)求|MN|的取值范围;
(iii)求证:△QMN的面积为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=ex-x2(x<0)与g(x)=x2-ln(a-x)的图象上存在关于x轴的对称点,则a的取值范围为(  )
A.(-∞,e)B.$({-∞,\frac{1}{e}})$C.(-∞,2e)D.$({-∞,\frac{1}{2e}})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知M(-5,0),N(5,0)是平面上的两点,若曲线C上至少存在一点P,使|PM|=|PN|+6,则称曲线C为“黄金曲线”.下列五条曲线:
①$\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{9}$=1;      ②y2=4x;        ③$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1;
④$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1;      ⑤x2+y2-x-3=0
其中为“黄金曲线”的是②.(写出所有“黄金曲线”的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图所示的几何体中,四边形ABCD和四边形BCEF是全等的等腰梯形,且平面BCEF⊥平面ABCD,AB∥DC,CE∥BF,AD=BC,AB=2CD,∠ABC=∠CBF=60°,G为线段AB的中点
(1)求证:AC⊥BF;
(2)求二面角D-FG-B(钝角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知双曲线的渐近线方程为$y=±\sqrt{2}x$,焦点坐标为$(0,-\sqrt{6})$、$(0,\sqrt{6})$,则双曲线方程为(  )
A.$\frac{y^2}{2}-\frac{x^2}{8}=1$B.$\frac{y^2}{8}-\frac{x^2}{2}=1$C.$\frac{y^2}{2}-\frac{x^2}{4}=1$D.$\frac{y^2}{4}-\frac{x^2}{2}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=lg(1+x)-lg(1-x),
(1)求函数f(x)的定义域;
(2)判断函数f(x)的奇偶性;
(3)求不等式f(x)>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.非零向量$\overrightarrow a$,$\overrightarrow b$,若$|{\overrightarrow a}|=2$,$|{\overrightarrow b}|=4$,且$(\overrightarrow a+\overrightarrow b)$⊥$\overrightarrow a$,则向量$\overrightarrow a$与$\overrightarrow b$的夹角是(  )
A.60°B.90°C.120°D.135°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知正数x,y满足x+y=1,则$\frac{1}{x}$$+\frac{x}{y}$的最小值为3.

查看答案和解析>>

同步练习册答案