精英家教网 > 高中数学 > 题目详情
18.已知函数g(x)=ax2-2ax+1+b(a>0)在区间[2,3]上有最小值1和最大值4,设f(x)=$\frac{g(x)}{x}$.
(1)求a,b的值;
(2)若不等式f(x)-kx-4≤0在x∈[-1,0)恒成立,求实数k的取值范围.

分析 (1)求出g(x)的对称轴,可得区间[2,3]为增区间,可得a,b方程,解得a=1,b=0;
(2)化简f(x),由题意可得k≤$\frac{1}{{x}^{2}}$-$\frac{6}{x}$+1在[-1,0)恒成立.运用配方和二次函数的最值求法,可得最小值为8,进而得到k的范围.

解答 解:(1)函数g(x)=ax2-2ax+1+b(a>0)的对称轴为x=1,
区间[2,3]在对称轴的右边,为增区间,
即有g(2)=1,g(3)=4,
即为1+b=1,3a+1+b=4,
解得a=1,b=0;
(2)f(x)=$\frac{g(x)}{x}$=x+$\frac{1}{x}$-2,
不等式f(x)-kx-4≤0在x∈[-1,0)恒成立,
即为k≤$\frac{1}{{x}^{2}}$-$\frac{6}{x}$+1在[-1,0)恒成立.
由$\frac{1}{{x}^{2}}$-$\frac{6}{x}$+1=($\frac{1}{x}$-3)2-8,由$\frac{1}{x}$≤-1,
可得当x=-1时,取得最小值8,
则有k≤8,
即k的取值范围是(-∞,8].

点评 本题考查二次函数在闭区间上的最值的求法,考查不等式恒成立问题的解法,注意运用参数分离,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.某品牌空调企业为扩大投资效益.决定成立科研课题组来研发一种新产品.根据分析和预测.新产品若研发成功,可获得10万元-1000万元的投资收益,与此同时,企业拟制订方案对课题组进行奖励,奖励方案是通过奖金y(单位:万元)与投资收益x(单位:万元)的模拟函数来进行,要求模拟函数y=f(x)所满足的条件是:(i)y=f(x)在[10,1000]上是增函数;(ii)f(x)≤9;(iii)f(x)≤$\frac{1}{5}$x.
(1)试分析下列模拟函数中哪个符合奖励方案的要求?并说明你的理由.
①f(x)=-(x-10)3+9;②f(x)=4ex+9;③f(x)=4lgx-3.
(2)对于(1)中符合奖励方案要求的模拟函数f(x),若使得f(x)<kx-3在(0,+∞)上恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)=ax2-2x(0≤x≤1).
(1)求f(x)的最小值;
(2)若f(x)≥-1恒成立,求a的范围;
(3)若f(x)=0的两根都在[0,1]内,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)已知数列{an}中,a1=$\frac{2}{3}$,an+1=$\frac{1}{2}$an+$\frac{1}{2}$,求数列{an}的通项公式;
(2)已知数列{an}中,a1=3,a2=5,且Sn+Sn-2=2Sn-1+2n-1(n≥3),求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ex-$\frac{1}{{e}^{|x|}}$
(1)若f(x)=2,求实数x的值
(2)若不等式f(2t)-mf(t)≥0对t∈[1,2]恒成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{{x}^{3}}{{e}^{ax}}$,g(x)=eaxf′(x)在[0,2]上单调递增(a>0).
(1)求a的最大值;
(2)在a取最大值的条件下,求证:当x1+x2=6且0<x1<3时,有f(x1)<f(x2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.二次函数f(x)的图象过点为A(-1,-16),且f(x)≤0的解集为{x|-5≤x≤3},g(x)=2x2+ax+1.
(1)求函数f(x)的解析式;
(2)解不等式g(x)≥0;
(3)若不等式xf(x)≥g(x)在区间x∈[1,2]上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知在数列{an}中,a1=4,an=a1+a2+…+an-1(n≥2),并设bn=$\frac{1}{2lo{g}_{2}{a}_{n}•lo{g}_{2}{a}_{n+1}}$.
(1)求{an}、{bn}的通项公式;
(2)若Sn=b1+b2+…+bn,求使Sn<$\frac{m}{32}$对一切n∈N*恒成立的最小整数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.计算下列各式(式中字母都是正数):(0.0081)${\;}^{-\frac{1}{4}}$-[3×($\frac{7}{8}$)0]-1

查看答案和解析>>

同步练习册答案