分析 (Ⅰ)由题意可得$2sinx+\sqrt{3}≥0$,解得$-\frac{π}{3}+2kπ≤x≤\frac{4π}{3}+2kπ$(k∈Z),从而可求定义域.
(Ⅱ)由已知利用诱导公式可得$sinα=\frac{4}{5}$,利用诱导公式可得cos(α-270°)的值,根据角的范围,利用同角三角函数基本关系式可求cosα,利用诱导公式化简所求即可计算得解.
解答 解:(Ⅰ)由题意可得:$2sinx+\sqrt{3}≥0$,即$sinx≥-\frac{{\sqrt{3}}}{2}$,
解得(图象法或单位圆法):$-\frac{π}{3}+2kπ≤x≤\frac{4π}{3}+2kπ$(k∈Z),
∴所求定义域为[$-\frac{π}{3}+2kπ,\frac{4π}{3}+2kπ$](k∈Z)
(Ⅱ)由已知$sin({540°}+α)=-\frac{4}{5}$,可得$sinα=\frac{4}{5}$,
∴cos(α-270°)=$-sinα=-\frac{4}{5}$,
又∵α为第二象限角,
∴$cosα=-\frac{3}{5}$,
于是:$\frac{{{{[sin({{180}°}-α)+cos({{360}°}-α)]}^2}}}{{tan({{180}°}+α)}}$=$\frac{{{{(sinα+cosα)}^2}}}{tanα}=-\frac{3}{100}$.
点评 本题主要考查了三角函数定义域及其求法,考查了诱导公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1-$\frac{\sqrt{3}}{2}$ | B. | 0 | C. | $\frac{1}{2}$ | D. | 1+$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=$\frac{1}{2}$x+1 | B. | y=-2x+1 | C. | y=2x-1 | D. | y=2x+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,-2,3) | B. | (-1,2,3) | C. | (-1,-2,-3) | D. | (1,2,-3) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com