精英家教网 > 高中数学 > 题目详情
.(本小题满分14分)已知直线与椭圆相交于两点,且(其中为坐标原点).(1)若椭圆的离心率为,求椭圆的标准方程;
(2)求证:不论如何变化,椭圆恒过定点
(3)若直线过(2)中的定点,且椭圆的离心率,求原点到直线距离的取值范围.
(Ⅰ)   (Ⅱ) () (Ⅲ)
(1)由

………5分
(2)由则不论如何变化,椭圆恒过第一象限内的定点()……7分
(3)将定点坐标代入直线方程得
则原点到直线的距离为,又
……10分

由此得…12分 令

可证得

故原点到直线距离的取值范围为……14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在面积为1的△PMN中,tan∠M=,tan∠N=-2,建立适当坐标系,求出以MN为焦点且过P点的椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心为坐标原点O,焦点在x轴上,过椭圆右焦点F2且斜率为1的直线交椭圆于A、B两点,弦AB的中点为T,OT的斜率为
(1)求椭圆的离心率;
(2)设Q是椭圆上任意一点,F1为左焦点,求的取值范围;
(3)若M、N是椭圆上关于原点对称的两个点,点P是椭圆上任意一点,当直线PN斜率,试求直线PM的斜率的范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,焦点在x 轴上,离心率为,且椭圆经过圆C:的圆心C。
(1)求椭圆的方程;
(2)设直线过椭圆的焦点且与圆C相切,求直线的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆C:上任一点P,作椭圆C的右准线的垂线PH(H为垂足),延长PH到点Q,使|HQ|=λ|PH|(λ≥1)。当点P在椭圆C上运动时,点Q的轨迹的离心率的取值范围为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆=1(a>b>0)的离心率为,直线y=x+1与椭圆相交于A、B两点,点M在椭圆上, = +,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知△ABC的两个顶点AB分别是椭圆 的左、右焦点, 三个内角ABC满足, 则顶点C的轨迹方程是(        ).  
A.B.(x<0)C.(x.<-2 )D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(I)求椭圆的方程;
(II)求直线轴上截距的取值范围;
(III)求面积的最大值

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

从椭圆短轴的一个端点看两焦点的视角是1200,则这个椭圆的离心率e="(   " )
A.B.C.D.翰林汇

查看答案和解析>>

同步练习册答案