精英家教网 > 高中数学 > 题目详情
6.已知向量$\overrightarrow a=({cos\frac{3x}{2},sin\frac{3x}{2}}),\overrightarrow b=({cos\frac{x}{2},sin\frac{x}{2}})$.
(1)已知$\overrightarrow a$∥$\overrightarrow b$且$x∈[{0,\frac{π}{2}}]$,求x;
(2)若$f(x)=\overrightarrow a•\overrightarrow b$,写出f(x)的单调递减区间.

分析 (1)由$\overrightarrow{a}∥\overrightarrow{b}$,根据平行向量的坐标关系以及两角差的正弦公式即可得出sinx=0,这样根据x的范围便可得出x的值;
(2)进行向量数量积的坐标运算,根据两角差的余弦公式便可得出f(x)=cosx,从而可以写出余弦函数的单调递减区间.

解答 解:(1)∵$\overrightarrow{a}$∥$\overrightarrow{b}$;
∴cos$\frac{3x}{2}$sin$\frac{x}{2}$-sin$\frac{3x}{2}$cos$\frac{x}{2}$=0,即sinx=0;
∵x∈[0,$\frac{π}{2}$];
∴x=0;
(2)f(x)=$\overrightarrow{a}•\overrightarrow{b}$=cos$\frac{3x}{2}$cos$\frac{x}{2}$+sin$\frac{3x}{2}$sin$\frac{x}{2}$=cosx;
∴f(x)的单调递减区间为[2kπ,2kπ+π],k∈Z.

点评 考查平行向量的坐标关系,以及两角和与差的正余弦公式,已知三角函数值求角,向量数量积的坐标运算,以及余弦函数的单调区间.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知抛物线y2=20x的焦点到双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一条渐近线的距离为4,则该双曲线的离心率为(  )
A.$\frac{5}{3}$B.$\frac{5}{4}$C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列命题中,真命题的个数是(  )
①经过直线外一点有且只有一条直线与已知直线平行
②经过直线外一点有且只有一条直线与已知直线垂直
③经过平面外一点有且只有一个平面与已知平面平行
④经过平面外一点有且只有一个平面与已知平面垂直.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若正实数m、n满足3m+4n=5mn,则m+3n的最小值是(  )
A.4B.5C.$\frac{24}{5}$D.$\frac{28}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.执行如图的程序框图,若输入k=63,则输出的n=(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设全集U={x∈N|x≥1},集合A={x∈N|x2≥3},则∁UA=(  )
A.B.{1}C.{1,2}D.{1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.复数z满足(z-1)(1+i)=2i,则|z|=(  )
A.1B.2C.$\sqrt{5}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,|$\overrightarrow{a}$|=$\sqrt{2}$,$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影为1,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,四边形ABCD是正方形,DE⊥平面ABE,BE=3DE,DE=3,AB⊥AE.
(I)求证:AB⊥面ADE;
(Ⅱ)求二面角A-BC-E的平面角的正弦值.

查看答案和解析>>

同步练习册答案