精英家教网 > 高中数学 > 题目详情
15.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,|$\overrightarrow{a}$|=$\sqrt{2}$,$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影为1,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{4}$.

分析 根据条件及一个向量在另一个向量方向上的投影的定义便可得到$\sqrt{2}cos<\overrightarrow{a},\overrightarrow{b}>=1$,从而有$cos<\overrightarrow{a},\overrightarrow{b}>=\frac{\sqrt{2}}{2}$,这样根据向量夹角的范围便可得出$\overrightarrow{a}$与$\overrightarrow{b}$的夹角的大小.

解答 解:∵$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影为1,且$|\overrightarrow{a}|=\sqrt{2}$;
∴$|\overrightarrow{a}|cos<\overrightarrow{a},\overrightarrow{b}>=\sqrt{2}cos<\overrightarrow{a},\overrightarrow{b}>=1$;
∴$cos<\overrightarrow{a},\overrightarrow{b}>=\frac{\sqrt{2}}{2}$;
∴$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{4}$.
故答案为:$\frac{π}{4}$.

点评 考查一个向量在另一个向量方向上的投影的定义及计算公式,向量夹角的范围,以及已知三角函数值求角.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x2+mx+4.
(Ⅰ)当x∈(1,2)时,不等式f(x)<0恒成立,求实数m的取值范围;
(Ⅱ)若不等式|$\frac{f(x)-{x}^{2}}{m}$|<1的解集中的整数有且仅有1,2,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知向量$\overrightarrow a=({cos\frac{3x}{2},sin\frac{3x}{2}}),\overrightarrow b=({cos\frac{x}{2},sin\frac{x}{2}})$.
(1)已知$\overrightarrow a$∥$\overrightarrow b$且$x∈[{0,\frac{π}{2}}]$,求x;
(2)若$f(x)=\overrightarrow a•\overrightarrow b$,写出f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.执行如图所示的程序框图,输出的S的值为30,则输入的n为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}{x=4cosθ}\\{y=4sinθ}\end{array}\right.$(θ为参数),倾斜角a=$\frac{π}{6}$的直线l经过点P(1,2).
(1)写出圆C的标准方程和直线l的参数方程;
(2)设直线l与圆C相交于A、B两点,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.一个摸球游戏,规则如下:在一不透明的纸盒中,装有6个大小相同、颜色各异的玻璃球.参加者交费1元可玩1次游戏,从中有放回地摸球3次.参加者预先指定盒中的某一种颜色的玻璃球,然后摸球.当所指定的玻璃球不出现时,游戏费被没收;当所指定的玻璃球出现1次,2次,3次时,参加者可相应获得游戏费的0倍,1倍,k倍的奖励(k∈N*),且游戏费仍退还给参加者.记参加者玩1次游戏的收益为X元.
(1)求概率P(X=0)的值;
(2)为使收益X的数学期望不小于0元,求k的最小值.
(注:概率学源于赌博,请自觉远离不正当的游戏!)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数$f(x)=({e^x}-\frac{1}{e^x}){x^3}$,若实数a满足f(log2a)+f(log0.5a)≤2f(1),则实数a的取值范围是(  )
A.$(-∞,\frac{1}{2})∪(2,+∞)$B.$(-∞,\frac{1}{2}]∪[2,+∞)$C.$[\frac{1}{2},2]$D.$(\frac{1}{2},2)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知x∈[0,2π),求函数y=$\frac{1-cosx}{sinx+2}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,$\overrightarrow{BD}$=2$\overrightarrow{DC}$,$\overrightarrow{DO}$=$\overrightarrow{OA}$,设x•$\overrightarrow{OA}$+$\overrightarrow{OB}$+y$\overrightarrow{OC}$=$\overrightarrow{0}$∈(x,y∈R),则x+y=(  )
A.-1B.1C.4D.5

查看答案和解析>>

同步练习册答案