精英家教网 > 高中数学 > 题目详情
5.在△ABC中,$\overrightarrow{BD}$=2$\overrightarrow{DC}$,$\overrightarrow{DO}$=$\overrightarrow{OA}$,设x•$\overrightarrow{OA}$+$\overrightarrow{OB}$+y$\overrightarrow{OC}$=$\overrightarrow{0}$∈(x,y∈R),则x+y=(  )
A.-1B.1C.4D.5

分析 利用向量的三角形法则、共面向量基本定理即可得出.

解答 解:∵$\overrightarrow{BD}$=2$\overrightarrow{DC}$,$\overrightarrow{DO}$=$\overrightarrow{OA}$,
∴$\overrightarrow{OD}-\overrightarrow{OB}$=2$(\overrightarrow{OC}-\overrightarrow{OD})$,
化为:$3\overrightarrow{DO}$+$\overrightarrow{OB}$+$2\overrightarrow{OC}$=3$\overrightarrow{OA}$+$\overrightarrow{OB}$+$2\overrightarrow{OC}$=$\overrightarrow{0}$,
又x•$\overrightarrow{OA}$+$\overrightarrow{OB}$+y$\overrightarrow{OC}$=$\overrightarrow{0}$∈(x,y∈R),
∴x=3,y=2.
则x+y=5.
故选:D.

点评 本题考查了向量的三角形法则、共面向量基本定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,|$\overrightarrow{a}$|=$\sqrt{2}$,$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影为1,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,四边形ABCD是正方形,DE⊥平面ABE,BE=3DE,DE=3,AB⊥AE.
(I)求证:AB⊥面ADE;
(Ⅱ)求二面角A-BC-E的平面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若$\overrightarrow{a}$=($\frac{7}{2}$,$\frac{1}{2}$),$\overrightarrow{b}$=($\frac{1}{2}$,$\frac{7}{2}$),与$\overrightarrow{a}$,$\overrightarrow{b}$夹角相等模长为1的向量为($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$)或(-$\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$)(用坐标表示)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.正整数集{1,2,3,4,5,…}中的元素是否比平方数集{1,4,9,16,25,…}中的元素多?一样多.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)在平面直角坐标系中,A(-$\frac{5}{13}$,$\frac{12}{13}$)是单位圆上一点,将点A沿单位圆按顺时针方向旋转60°,可到达点B,设OA为角α终边,OB为角β终边,且α,β∈(0,π),求sinβ的值
(2)己知α∈($\frac{π}{4}$,$\frac{3π}{4}$),β∈(0,$\frac{π}{4}$),cos($α-\frac{π}{4}$)=$\frac{3}{5}$,sin($\frac{3π}{4}$+β)=$\frac{5}{13}$,求sin(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图是一个正方体纸盒的展开图,把复数1,-1,2i,-2i,$\sqrt{2}$,-$\sqrt{2}$按虚线分别填入六个正方折成正方体后,相对面上的两个数的模相等,则不同的填法有48种(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)是偶函数,且当x≥0时,f(x)=log2(x+1)-x2,则f(f(3))=(  )
A.-7B.-46C.7D.46

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=3-2cos($\frac{2}{3}$x+$\frac{π}{3}$)的最大值为5,此时自变量x的取值集合是{x|x=3kπ+π,k∈Z}.

查看答案和解析>>

同步练习册答案