| A. | $\frac{5}{3}$ | B. | $\frac{5}{4}$ | C. | $\sqrt{3}$ | D. | $\sqrt{5}$ |
分析 求出抛物线的焦点坐标,双曲线的渐近线方程,由点到直线的距离公式,可得a,b的关系,再由离心率公式,计算即可得到.
解答 解:抛物线y2=20x的焦点为(5,0),
双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一条渐近线为bx+ay=0,
则焦点到渐近线的距离d=$\frac{5b}{\sqrt{{a}^{2}+{b}^{2}}}$=4,
即有b=$\frac{4}{3}$a,
则c=$\sqrt{{a}^{2}+{b}^{2}}$=$\frac{5}{3}$a,
即有双曲线的离心率为$\frac{5}{3}$.
故选:A.
点评 本题考查抛物线和双曲线的方程和性质,考查渐近线方程的运用,考查点到直线的距离公式,考查离心率的求法,属于中档题.
科目:高中数学 来源: 题型:解答题
| 轿车A | 轿车B | 轿车C | |
| 舒适型 | 100 | 150 | z |
| 标准型 | 300 | 450 | 600 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | 4 | C. | $\frac{1}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | $\frac{15}{8}$ | C. | $\frac{16}{5}$ | D. | $\frac{8}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com