| A. | $\frac{1}{4}$ | B. | 4 | C. | $\frac{1}{2}$ | D. | 2 |
分析 根据条件便可以得到$|\overrightarrow{{e}_{1}}|=1,|\overrightarrow{{e}_{2}}|=1$,$\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}=\frac{1}{2}$,而根据$\overrightarrow{a}=\overrightarrow{{e}_{1}}+λ\overrightarrow{{e}_{2}}$与$\overrightarrow{b}=2\overrightarrow{{e}_{1}}-3\overrightarrow{{e}_{2}}$垂直,从而有$(\overrightarrow{{e}_{1}}+λ\overrightarrow{{e}_{2}})•(2\overrightarrow{{e}_{1}}-3\overrightarrow{{e}_{2}})=0$,进行数量积的运算即可得出关于λ的方程,解方程便可得出λ的值.
解答 解:根据题意,$|\overrightarrow{{e}_{1}}|=|\overrightarrow{{e}_{2}}|=1,\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}=\frac{1}{2}$;
∵$(\overrightarrow{{e}_{1}}+λ\overrightarrow{{e}_{2}})⊥(2\overrightarrow{{e}_{1}}-3\overrightarrow{{e}_{2}})$;
∴$(\overrightarrow{{e}_{1}}+λ\overrightarrow{{e}_{2}})•(2\overrightarrow{{e}_{1}}-3\overrightarrow{{e}_{2}})=2{\overrightarrow{{e}_{1}}}^{2}$$+(2λ-3)\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}-3λ{\overrightarrow{{e}_{2}}}^{2}$=$2+\frac{1}{2}(2λ-3)-3λ=0$;
解得$λ=\frac{1}{4}$.
故选:A.
点评 考查单位向量的概念,向量的数量积的运算及计算公式,以及向量垂直的充要条件.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{3}$ | B. | $\frac{5}{4}$ | C. | $\sqrt{3}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| X | -1 | 0 | 1 | 2 |
| P | a | b | c | $\frac{1}{12}$ |
| A. | $\frac{1}{2}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{4}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com