精英家教网 > 高中数学 > 题目详情
9.某公司新招聘进8名员工,平均分给下属的甲、乙两个部门,其中两名英语翻译人员不能分给同一个部门,另三名电脑编程人员也不能分给同一个部门,则不同的分配方案种数是(  )
A.18B.24C.36D.72

分析 分类讨论:①甲部门要2个2电脑编程人员和一个翻译人员;②甲部门要1个电脑编程人员和1个翻译人员.分别求得这2个方案的方法数,再利用分类计数原理,可得结论.

解答 解:由题意可得,有2种分配方案:①甲部门要2个电脑编程人员,则有3种情况;翻译人员的分配有2种可能;再从剩下的3个人中选一人,有3种方法.
根据分步计数原理,共有3×2×3=18种分配方案.
②甲部门要1个电脑编程人员,则方法有3种;翻译人员的分配方法有2种;再从剩下的3个人种选2个人,
方法有3种,共3×2×3=18种分配方案.
由分类计数原理,可得不同的分配方案共有18+18=36种,
故选:C.

点评 本题考查计数原理的运用,根据题意分步或分类计算每一个事件的方法数,然后用乘法原理和加法原理计算,是解题的常用方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知sin(α+$\frac{π}{3}$)=$\frac{1}{3}$,且α为三角形一内角,则cos(α+$\frac{π}{6}$)的值等于$\frac{-2\sqrt{6}+1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.计算tan20°-tan80°+$\sqrt{3}$tan20°•tan80°的值是-$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知锐角△ABC中内角A、B、C所对边的边长分别为a、b、c,满足a2+b2=6abcosC,且${sin^2}C=2\sqrt{3}sinAsinB$.
(Ⅰ)求角C的值;
(Ⅱ)设函数$f(x)=sin(ωx+\frac{π}{6})+cosωx_{\;}^{\;}(ω>0)$,图象上相邻两最高点间的距离为π,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.定义集合A-B={x|x∈A且x∉B},若集合M={1,2,3,4,5},集合N={x|x=2k-1,k∈Z},则集合M-N的子集个数为(  )
A.2B.3C.4D.无数个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.对于数列{an},a1=a$+\frac{1}{a}$(a>0.,且a≠1),an+1=a1-$\frac{1}{{a}_{n}}$.
(1)求a2,a3,a4,并猜想这个数列的通项公式;
(2)用数学归纳法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)在R上是减函数,若a=f(log${\;}_{\frac{1}{2}}$8),b=f[($\frac{1}{2}$)${\;}^{\frac{1}{3}}$],c=f(2${\;}^{\frac{1}{2}}$).则(  )
A.a<b<cB.c<a<bC.c<b<aD.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,OM∥AB,点P在由射线OM,线段OB及AB的延长线围成的阴影区域内(不含边界),且$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,则实数对(x,y)可以是(  )
A.($\frac{1}{4}$,$\frac{3}{4}$)B.(-$\frac{2}{3}$,$\frac{2}{3}$)C.(-$\frac{1}{4}$,$\frac{3}{4}$)D.(-$\frac{1}{5}$,$\frac{7}{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设x>5,P=$\sqrt{x-4}$-$\sqrt{x-5}$,Q=$\sqrt{x-2}$-$\sqrt{x-3}$,则P与Q的大小关系是P<Q.

查看答案和解析>>

同步练习册答案