精英家教网 > 高中数学 > 题目详情
17.已知锐角△ABC中内角A、B、C所对边的边长分别为a、b、c,满足a2+b2=6abcosC,且${sin^2}C=2\sqrt{3}sinAsinB$.
(Ⅰ)求角C的值;
(Ⅱ)设函数$f(x)=sin(ωx+\frac{π}{6})+cosωx_{\;}^{\;}(ω>0)$,图象上相邻两最高点间的距离为π,求f(A)的取值范围.

分析 (Ⅰ)由a2+b2=6abcosC,结合余弦定理可求$cosC=\frac{c^2}{4ab}$,又sin2C=2$\sqrt{3}$sinAsinB,根据由正弦定理得:c2=2$\sqrt{3}$ab,从而可求cosC,即可解得C的值.
(Ⅱ)由三角函数恒等变换的应用化简函数解析式可得$f(x)=sin(ωx+\frac{π}{6})+cosωx=\sqrt{3}sin(ωx+\frac{π}{3})$,由题意,利用周期公式即可求ω,可得$f(x)=\sqrt{3}sin(2x+\frac{π}{3})$,由$C=\frac{π}{6}$,$B=\frac{5π}{6}-A$,A,B为锐角,可得范围$\frac{π}{3}<A<\frac{π}{2}$,求得范围$π<2A+\frac{π}{3}<\frac{4π}{3}$,利用正弦函数的图象和性质即可得解.

解答 (本题满分为12分)
解:(Ⅰ)因为a2+b2=6abcosC,由余弦定理知a2+b2=c2+2abcosC,
所以$cosC=\frac{c^2}{4ab}$…(2分)
又因为sin2C=2$\sqrt{3}$sinAsinB,则由正弦定理得:c2=2$\sqrt{3}$ab,…(4分)
所以cosC=$\frac{{c}^{2}}{4ab}$=$\frac{2\sqrt{3}ab}{4ab}$=$\frac{\sqrt{3}}{2}$,
所以C=$\frac{π}{6}$.…(6分)
(Ⅱ)因为$f(x)=sin(ωx+\frac{π}{6})+cosωx=\sqrt{3}sin(ωx+\frac{π}{3})$,
由已知$\frac{2π}{ω}$=π,ω=2,
则$f(x)=\sqrt{3}sin(2x+\frac{π}{3})$,…(9分)
因为$C=\frac{π}{6}$,$B=\frac{5π}{6}-A$,
由于0$<A<\frac{π}{2}$,0$<B<\frac{π}{2}$,
所以$\frac{π}{3}<A<\frac{π}{2}$.
所以$π<2A+\frac{π}{3}<\frac{4π}{3}$,
所以$-\frac{3}{2}<f(A)<0$.…(12分)

点评 本题主要考查了余弦定理,三角函数恒等变换的应用,正弦定理,三角函数周期公式,正弦函数的图象和性质在解三角形中的应用,考查了转化思想和数形结合思想的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知直线x-$\sqrt{3}$y+2=0过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点,且与双曲线的一条渐近线垂直,则双曲线的实轴为(  )
A.2B.2$\sqrt{2}$C.2$\sqrt{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在直角坐标系中,定义两点A(x1,y1),B(x2,y2)之间的“直角距离”为d(A,B)=|x1-x2|+|y1-y2|.
现有以下命题:
①若A,B是x轴上两点,则d(A,B)=|x1-x2|;
②已知点A(1,2),点B(cos2θ,sin2θ),则d(A,B)为定值;
③已知点A(2,1),点B在圆x2+y2=1上,则d(A,B)的取值范围是(3-$\sqrt{2}$,3+$\sqrt{2}$);
④若|AB|表示A,B两点间的距离,那么|AB|≥$\frac{\sqrt{2}}{2}$d(A,B).
其中真命题的是①②④(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设D为△ABC所在平面内一点,|$\overrightarrow{AB}$|=3,|$\overrightarrow{AC}$|=4,|$\overrightarrow{BC}$|=5,$\overrightarrow{CD}$=$\overrightarrow{BC}$,则$\overrightarrow{AD}$•$\overrightarrow{CD}$=(  )
A.23B.25C.32D.41

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若tanα=$\frac{1}{2}$,则sin4α-cos4α的值为(  )
A.-$\frac{1}{5}$B.-$\frac{3}{5}$C.$\frac{1}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.对于两个平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,定义它们的一种运算:$\overrightarrow{a}$?$\overrightarrow{b}$=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|sinθ(其中θ为向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角),则关于这种运算的以下结论中,不恒成立的是(  )
A.$\overrightarrow{a}$?$\overrightarrow{b}$=$\overrightarrow{b}$?$\overrightarrow{a}$
B.若$\overrightarrow{a}$?$\overrightarrow{b}$=0,则$\overrightarrow{a}$$∥\overrightarrow{b}$
C.($\overrightarrow{a}$+$\overrightarrow{b}$)?$\overrightarrow{c}$=$\overrightarrow{a}$?$\overrightarrow{c}$+$\overrightarrow{b}$?$\overrightarrow{c}$
D.若$\overrightarrow{a}$=(x1,y1),$\overrightarrow{b}$=(x2,y2),则$\overrightarrow{a}$?$\overrightarrow{b}$=|x1y2-x2y1|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某公司新招聘进8名员工,平均分给下属的甲、乙两个部门,其中两名英语翻译人员不能分给同一个部门,另三名电脑编程人员也不能分给同一个部门,则不同的分配方案种数是(  )
A.18B.24C.36D.72

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知点A(1,2),点P(x,y)满足$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-3≤0}\\{x+3y-3≥0}\end{array}\right.$,O为坐标原点,则Z=$\overrightarrow{OA}$•$\overrightarrow{OP}$的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求tan(-690°)sin(-1050°)的值.

查看答案和解析>>

同步练习册答案