精英家教网 > 高中数学 > 题目详情
7.已知直线x-$\sqrt{3}$y+2=0过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点,且与双曲线的一条渐近线垂直,则双曲线的实轴为(  )
A.2B.2$\sqrt{2}$C.2$\sqrt{3}$D.4

分析 由直线x-$\sqrt{3}$y+2=0过(-2,0),可得c=2,即a2+b2=4,求出渐近线方程,运用两直线垂直的条件:斜率之积为-1,可得$\frac{b}{a}$=$\sqrt{3}$,解方程可得a=1,进而得到双曲线的实轴长2a.

解答 解:直线x-$\sqrt{3}$y+2=0过(-2,0),
由题意可得c=2,即a2+b2=4,
双曲线的渐近线方程为y=±$\frac{b}{a}$x,
由题意可得$\frac{b}{a}$=$\sqrt{3}$,
解得a=1,b=$\sqrt{3}$,
则双曲线的实轴为2.
故选:A.

点评 本题考查双曲线的方程和性质,考查渐近线方程的运用,以及两直线垂直的条件:斜率之积为-1,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知变量x,y满足$\left\{\begin{array}{l}x+y≤5\\ x-y≥-3\\ x≥0,y≥0\end{array}\right.$,则2x+3y的最大值为14.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.等差数列{an}的前m项和为30,前2m项和为100,求数列{an}的前3m项的和S3m
(2)两个等差数列{an},{bn}的前n项和分别为Sn和Tn,已知$\frac{{S}_{n}}{{T}_{n}}$=$\frac{7n+2}{n+3}$,求$\frac{{a}_{5}}{{b}_{5}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知数列{an}的前n项和为Sn(Sn≠0),a1=$\frac{1}{2}$,且对任意正整数n,都有an+1+SnSn+1=0,则a1+a20=(  )
A.$\frac{209}{420}$B.$\frac{19}{21}$C.$\frac{23}{42}$D.$\frac{13}{42}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知F1,F2是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,过点F1的直线与圆x2+y2=a2切于点P,|PF2|=3|PF1|,则该双曲线的离心率为$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设k∈R,对任意的向量$\overrightarrow a$,$\overrightarrow b$和实数x∈[0,1],如果满足$|{\overrightarrow a}|=k|{\overrightarrow a-\overrightarrow b}|$,则有$|{\overrightarrow a-x\overrightarrow b}|≤λ|{\overrightarrow a-\overrightarrow b}|$成立,那么实数λ的最小值为(  )
A.1B.kC.$\frac{k+1+|k-1|}{2}$D.$\frac{k+1-|k-1|}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知sin(α+$\frac{π}{3}$)=$\frac{1}{3}$,且α为三角形一内角,则cos(α+$\frac{π}{6}$)的值等于$\frac{-2\sqrt{6}+1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知集合U={1,2,3,4,5,6},S={1,2,5},T={2,3,6},则S∩(∁UT)={1,5},集合S共有8个子集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知锐角△ABC中内角A、B、C所对边的边长分别为a、b、c,满足a2+b2=6abcosC,且${sin^2}C=2\sqrt{3}sinAsinB$.
(Ⅰ)求角C的值;
(Ⅱ)设函数$f(x)=sin(ωx+\frac{π}{6})+cosωx_{\;}^{\;}(ω>0)$,图象上相邻两最高点间的距离为π,求f(A)的取值范围.

查看答案和解析>>

同步练习册答案