精英家教网 > 高中数学 > 题目详情
11.在平面直角坐标系中,过原点O的直线l与曲线y=ex-2交于不同的两点A,B,分别过A,B作x轴的垂线,与曲线y=lnx分别交于点C,D,则直线CD的斜率为1.

分析 设直线l的方程为y=kx(k>0),A(x1,y1),B(x2,y2)(x1>0,x2>0),由A、B与曲线、直线的关系求出求出x1和x2,由斜率公式求出直线CD的斜率k,根据条件和对数的运算化简得到答案.

解答 解:设直线l的方程为y=kx(k>0),
且A(x1,y1),B(x2,y2)(x1>0,x2>0),
则C(x1,lnx1),D(x2,lnx2),
因为A、B点在曲线y=ex-2和直线l上,
所以kx1=ex1-2,则x1=2+lnkx1
同理可得x2=2+lnkx2
所以直线CD的斜率k=$\frac{ln{x}_{2}-ln{x}_{1}}{{x}_{2}-{x}_{1}}$
=$\frac{ln{x}_{2}-ln{x}_{1}}{lnk{x}_{2}-lnk{x}_{1}}$=$\frac{ln\frac{{x}_{2}}{{x}_{1}}}{ln\frac{k{x}_{2}}{k{x}_{1}}}$=1,
故答案为:1.

点评 本题考查直线与曲线的位置关系,直线斜率的公式,对数的运算性质的应用,注意斜率、坐标的范围,考查计算、化简能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足b=2,cosC=$\frac{1}{4}$,△ABC的面积为$\frac{{3\sqrt{15}}}{4}$.
(1)求a的值;
(2)求sin2B的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在空间直角坐标系O-xyz中,A(1,2,3),B(4,5,6),则|AB|=3$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在四棱锥P-ABCD中,底面ABCD是正方形.点E是棱PC的中点,平面ABE与棱PD交于点F.
(1)求证:AB∥EF;
(2)若△PAD为正三角形,且平面PAD⊥平面ABCD,求PB与平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知实数x,y满足-$\frac{π}{4}$≤x≤$\frac{π}{4}$,-$\frac{π}{4}$≤y≤$\frac{π}{4}$,若2•3x+sinx-2=0,9y+sinycosy-1=0,则cos(x-2y)的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在圆x2+y2=4所围成的区域内随机取一个点P(x,y),则|x|+y≤0的概率为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥DC,∠ABC=60°,DC=1,AD=$\sqrt{3}$.已知PB=PC.
(1)若N为PA的中点,求证:DN∥平面PBC;
(2)若M为BC的中点,求证:MN⊥BC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=$\frac{ln(|x|)}{{{2^x}-{2^{-x}}}}$的图象大致为(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.定义点P到图形C上每一个点的距离的最小值为点P到图形C的距离,那么平面内到定圆C的距离与到定点A(A在圆C内且不与圆心C重合)的距离相等的点的轨迹是(  )
A.直线B.C.椭圆D.双曲线的一支

查看答案和解析>>

同步练习册答案