精英家教网 > 高中数学 > 题目详情
已知三棱锥V-ABC四个顶点在同一个球面上,∠BAC=90°,AB=AC=2,若球心到平面ABC距离为1,则该球体积为
 
考点:球的体积和表面积,球内接多面体
专题:计算题,空间位置关系与距离
分析:根据条件得到BC即为A、B、C三点所在圆的直径,取BC的中点M,连接OM,则OM即为球心到平面ABC的距离,在Rt△OMB中,OM=1,MB=
2
,即可求球的半径,然后求出球的体积.
解答: 解:如图所示:∵∠BAC=90°,
∴取BC的中点M,则球面上A、B、C三点所在的圆即为⊙M,连接OM,
则OM即为球心到平面ABC的距离,
在Rt△OMB中,OM=1,MB=
2

∴OA=
3
,即球球的半径为
3

∴球的体积V=
4
3
π×(
3
)3
=4
3
π,
故答案为:4
3
π.
点评:本题主要考查球的体积公式的计算,根据条件求出球的半径是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x-alnx(a∈R)
(1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;
(2)求函数f(x)的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-ax2(a∈R).
(1)求函数f(x)在点P(0,1)处的切线方程;
(2)若函数f(x)为R上的单调递增函数,试求a的范围;
(3)若函数f(x)不出现在直线y=x+1的下方,试求a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x),x∈R,x≠0
(1)若a>0且a≠1,f(logax)=x-
1
x
,求f(x)的解析式,并判断f(x)的奇偶性.
(2)若f(x)=x+
1
x
,判断函数f(x)在区间(0,+∞)上的单调性并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,AB⊥平面BCD,DC⊥CB,AD与平面BCD所成的角为30°,且AB=BC.求AD与平面ABC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x3+ax2+3x-9,已知f(x)在x=-1时取得极值,则a等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
1
2
xsin2x在x=
π
2
的切线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆x2+y2-4x-12=0与曲线y2=2px(p≠0)的准线相切,则p=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

点M(-1,3,-4)在xOy平面上的射影坐标为
 

查看答案和解析>>

同步练习册答案