精英家教网 > 高中数学 > 题目详情
14.某流程图如图所示,现输入如下四个函数,则可以输出的函数是①②③.
①f(x)=$\frac{sinx}{{x}^{2}}$          
②f(x)=ln($\sqrt{{x}^{2}+1}$+x)
③f(x)=$\frac{{e}^{x}-{e}^{-x}}{{e}^{x}+{e}^{-x}}$
④f(x)=$\frac{si{n}^{2}x}{1+co{s}^{2}x}$.

分析 根据程序框图得到第一个条件为判断函数是否是奇函数,第二个条件判断函数是否有零点,然后根据函数的性质进行判断即可.

解答 解:第一个条件为判断函数是否是奇函数,第二个条件判断函数是否有零点,
①f(x)=$\frac{sinx}{{x}^{2}}$ 是奇函数,由f(x)=0得sinx=0且x≠0,函数存在零点,满足条件.
②由f(x)=ln($\sqrt{{x}^{2}+1}$+x),得f(-x)+f(x)=ln($\sqrt{{x}^{2}+1}$+x)+ln($\sqrt{{x}^{2}+1}$-x)=ln($\sqrt{{x}^{2}+1}$+x)($\sqrt{{x}^{2}+1}$-x)=ln(1+x2-x2)=ln1=0,
当x=0时,f(x)=0,则满足函数有零点,满足条件.
③f(x)=$\frac{{e}^{x}-{e}^{-x}}{{e}^{x}+{e}^{-x}}$,满足f(-x)=-f(x),且当x=0时,f(0)=0,满足条件.
④f(x)=$\frac{si{n}^{2}x}{1+co{s}^{2}x}$.得f(-x)=f(x),函数是偶函数,不满足第一个条件.
故答案为:①②③

点评 本题主要考查程序框图的应用,根据函数的性质得到第一个条件为判断函数是否是奇函数,第二个条件判断函数是否有零点是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)在R上单调递增,若?x∈R,f(|x+1|)≤f(log2a-|x+2|),则实数a的取值范围是(  )
A.[2,+∞)B.[4,+∞)C.[8,+∞)D.(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设z=1-i(i为虚数单位),若复数$\frac{2}{z}$-z2在复平面内对应的向量为$\overrightarrow{OZ}$,则向量$\overrightarrow{OZ}$的模是(  )
A.$\sqrt{2}$B.2C.$\sqrt{5}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知球O是某几何体的外接球,而该几何体是由一个侧棱长为2$\sqrt{5}$的正四棱锥S-ABCD与一个高为6的正四棱柱ABCD-A1B1C1D1拼接而成,则球O的表面积为(  )
A.$\frac{100π}{3}$B.64πC.100πD.$\frac{500π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=|2x-a|+|x-1|,a∈R.
(Ⅰ)若不等式f(x)≥2-|x-1|恒成立,求实数a的取值范围;
(Ⅱ)当a=1时,直线y=m与函数f(x)的图象围成三角形,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在极坐标系中,曲线C1:ρ=2cosθ,曲线${C_2}:ρ{sin^2}θ=4cosθ$.以极点为坐标原点,极轴为x轴正半轴建立直角坐标系xOy,曲线C的参数方程为$\left\{{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$(t为参数).
(Ⅰ)求C1,C2的直角坐标方程;
(Ⅱ)C与C1,C2交于不同四点,这四点在C上的排列顺序为P,Q,R,S,求||PQ|-|RS||的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知曲线C1的参数方程为$\left\{\begin{array}{l}x=4+5cost\\ y=5+5sint\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.
(1)把C1的参数方程化为极坐标方程;
(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,$∠ACB=\frac{π}{6},BC=\sqrt{3},AC=4$,则AB等于(  )
A.$\sqrt{7}$B.3C.$\sqrt{11}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.一个几何体的三视图如图所示,该几何体的表面积是$10+2\sqrt{5}$,则图中x的值为(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.2D.$\sqrt{5}$

查看答案和解析>>

同步练习册答案