精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=|2x-a|+|x-1|,a∈R.
(Ⅰ)若不等式f(x)≥2-|x-1|恒成立,求实数a的取值范围;
(Ⅱ)当a=1时,直线y=m与函数f(x)的图象围成三角形,求m的取值范围.

分析 (I)利用绝对值三角不等式得出|x-$\frac{a}{2}$|+|x-1|的最小值,从而解出a的范围;
(II)做出f(x)的函数图象,根据函数图象得出m的范围.

解答 解:(I)∵f(x)≥2-|x-1|恒成立,即|x-$\frac{a}{2}$|+|x-1|≥1恒成立,
又|x-$\frac{a}{2}$|+|x-1|≥|x-$\frac{a}{2}$-(x-1)|=|1-$\frac{a}{2}$|,
∴|1-$\frac{a}{2}$|≥1,解得a≤0或a≥4.
∴a的取值范围是(-∞,0]∪[4,+∞).
(II)当a=1时,f(x)=|2x-1|+|x-1|=$\left\{\begin{array}{l}{2-3x,x≤\frac{1}{2}}\\{x,\frac{1}{2}<x<1}\\{3x-2,x≥1}\end{array}\right.$,
做出f(x)的函数图象如图所示:

由图象可知当$\frac{1}{2}$<m≤1时,直线y=m与f(x)的图象构成三角形.

点评 本题考查了绝对值不等式的解法,分段函数的函数图象,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.直三棱柱ABC-A1B1C1的所有顶点均在同一个球面上,且AB=AC=3,∠BAC=60°,AA1=2.则该球的体积为$\frac{32π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.执行如图所示的程序框图,则输出m=(  )
A.2.25B.2.5C.2.625D.2.75

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.《九章算术》是我国古代一部重要的数学著作,书中有如下问题:“今有良马与驽马发长安,至齐.齐去长安三千里,良马初日行一百九十三里,日增一十三里,驾马初日行九十七里,日减半里.良马先至齐,复还迎驽马.何日相逢,”其大意为:“现在有良马和驽马同时从长安出发到齐去,已知长安和齐的距离是3000里,良马第一天行193里,之后每天比前一天多行13里,驽马第一天行97里,之后每天比前一天少行0.5里.良马到齐后,立刻返回去迎驽马,多少天后两马相遇.”现有三种说法:①驽马第九日走了93里路;②良马四日共走了930里路;③行驶5天后,良马和驽马相距615里.
那么,这3个说法里正确的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.某程序框图如图所示,若该程序运行后输出的值是$\frac{7}{4}$,则a=3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.某流程图如图所示,现输入如下四个函数,则可以输出的函数是①②③.
①f(x)=$\frac{sinx}{{x}^{2}}$          
②f(x)=ln($\sqrt{{x}^{2}+1}$+x)
③f(x)=$\frac{{e}^{x}-{e}^{-x}}{{e}^{x}+{e}^{-x}}$
④f(x)=$\frac{si{n}^{2}x}{1+co{s}^{2}x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.参数方程$\left\{\begin{array}{l}{x=t-1}\\{y=t+2}\end{array}\right.$(t为参数)的曲线与坐标轴的交点坐标为(  )
A.(1,0),(0,-2)B.(0,1),(-1,0)C.(0,-1),(1,0)D.(0,3),(-3,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.用数学归纳法证明“1+a+a2+…+an=$\frac{1-{a}^{n+1}}{1-a}$,a≠1,n∈N*”,在验证n=1时,左边是1+a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设f(x)=|3x-2|+|x-2|.
(Ⅰ)解不等式f(x)=|3x-2|+|x-2|≤8;
(Ⅱ)对任意的x,f(x)≥(m2-m+2)•|x|恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案