分析 由题意知:△ABC为等边三角形,设其中心为O,设球心为O1,则△AO1O为直角三角形,AO⊥OO1,由此能求出球的半径,从而能求出该球的体积.
解答 解:由题意知:![]()
△ABC为等边三角形,设其中心为O,
则AO=BO=CO=$\sqrt{3}$,
设球心为O1,则△AO1O为直角三角形,AO⊥OO1,
∴球的半径r=$\sqrt{(\sqrt{3})^{2}+{1}^{2}}$=2,
∴该球的体积为V球=$\frac{4}{3}π×{2}^{3}$=$\frac{32π}{3}$.
故答案为:$\frac{32π}{3}$.
点评 本题考查球的体积的求法,考查直三棱柱、球等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①④ | B. | ②③ | C. | ①②③ | D. | ①③④ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 15π | B. | $\frac{15π}{2}$ | C. | $\frac{7π}{2}$ | D. | 7π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [2,+∞) | B. | [4,+∞) | C. | [8,+∞) | D. | (0,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com