精英家教网 > 高中数学 > 题目详情
12.如图:ABCD是菱形,SAD是以AD为底边等腰三角形,$SA=SD=\sqrt{39}$,$AD=2\sqrt{3}$,且二面角S-AD-B大小为120°,∠DAB=60°.
(1)求证:AD⊥SB;
(2)求SC与SAD平面所成角的正弦值.

分析 (1)取AD的中点E,连SE,BE,证明AD⊥平面SBE,即可证明:AD⊥SB;
(2)过S作SO⊥直线BE,垂足为O,证明∠SEB为二面角的平面角,再求SC与SAD平面所成角的正弦值.

解答 (1)证明:取AD的中点E,连SE,BE,
由题意知△ABD为正三角形,
∴SE⊥AD,BE⊥AD.
又SE∩BE=E,
∴AD⊥平面SBE,SB?平面SBE,
∴AD⊥SB.
(2)解:过S作SO⊥直线BE,垂足为O,
由(1)知平面ABCD⊥平面SBE,
则SO⊥平面ABCD,连OE,则AD⊥OE.
∴∠SEB为二面角的平面角,∠SEO=60°,
∴$SO=6sin60°=3\sqrt{3}$.
∵BC∥SAD,C到SAD距离为B到SAD距离,
由B作SE垂直BO1,由(1)知平面ASD⊥平面SBE,平面BO1⊥平面SAD,
BE=3,$B{O_1}=2sin60°=\frac{3}{2}\sqrt{3}$.OE=3,EB=3,∴OABD是平行四边形,O在直线CD上,SC2=SO2+OC2=27+48=75,$SC=5\sqrt{3}$.
设线面角为α,$sinα=\frac{{B{O_1}}}{SC}=\frac{3}{10}$,∴SC与平面SAD所成角的正弦值为$\frac{3}{10}$.

点评 本题考查线面垂直的判定与性质,考查线面角,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.设圆:x2+y2+2y-3=0与y轴交于A(0,y1),B(0,y2)两点,则y1y2 的值为(  )
A.3B.-3C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}中,a1=1,a3=9,且an=an-1+λn-1(n≥2).
( I)求λ的值及数列{an}的通项公式;
( II)设${b_n}={(-1)^n}•({a_n}+n)$,且数列{bn}的前n项和为Sn,求S2n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ex-x2-1,x∈R.
(1)求函数f(x)的图象在点(0,f(0))处的切线方程;
(2)当x∈R时,求证:f(x)≥-x2+x;
(3)若f(x)>kx对任意的x∈(0,+∞)恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设p:x2-x<1,$q:{log_2}({x^2}-x)<0$,则非p是非q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某社区对社区内50名70岁以上老人的身体健康状况和对平时锻炼身体的积极性进行了调查,统计数据如表所示:
积极锻炼身体不积极锻炼身体合计
健康状况良好18725
健康状况一般61925
合计242650
(1)如果在被调查的老人中随机抽查一名,那么抽到积极锻炼身体的老人的概率是多少?抽到不积极锻炼身体且健康状况一般的老人的概率是多少?
(2)试运用独立性检验思想方法判断能否有99%的把握说老人的身体健康状况与锻炼身体的积极性有关.(参考如表)
 P(k2>k) 0.15 0.10 0.06 0.025 0.010 0.005 0.001
 k 2.0722.7063.841 5.0246.635 7.879 10.828
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知复数z=$\frac{(-1+i)(2+i)}{-i}$,则z在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.执行如图的程序框图,如果输入的x∈[-1,3],输出的y∈[0,4],则输入的a的取值范围为(  )
A.[-3,4]B.[1,4]C.[-3,0]D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知过点P(a,0)的直线l的参数方程是$\left\{\begin{array}{l}x=\frac{{\sqrt{3}}}{2}t+a\\ y=\frac{1}{2}t\end{array}\right.$(t为参数),以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ=4cosθ.
(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)若直线l与曲线C交于A,B两点,试问是否存在实数a,使得$|{\overrightarrow{PA}+\overrightarrow{PB}}|=6$且$|{\overrightarrow{AB}}|=4$?若存在,求出实数a的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案