精英家教网 > 高中数学 > 题目详情
16.若数列{an+1-an}是等比数列,且a1=1,a2=2,a3=5,则an=$\frac{{3}^{n-1}}{2}+\frac{1}{2}$.

分析 由已知得数列{an+1-an}的公比q=$\frac{{a}_{3}-{a}_{2}}{{a}_{2}-{a}_{1}}$=$\frac{5-2}{2-1}$=3,从而an+1-an=3n-1,由此利用累加法能求出an

解答 解:∵数列{an+1-an}是等比数列,且a1=1,a2=2,a3=5,
∴数列{an+1-an}的公比q=$\frac{{a}_{3}-{a}_{2}}{{a}_{2}-{a}_{1}}$=$\frac{5-2}{2-1}$=3,
∴an+1-an=3n-1
an=a1+(a2-a1)+(a3-a2)+…+(an-an-1
=1+1+3+32+…+3n-2
=1+$\frac{1-{3}^{n-1}}{1-3}$
=$\frac{{3}^{n-1}}{2}+\frac{1}{2}$.
故答案为:$\frac{{3}^{n-1}}{2}+\frac{1}{2}$.

点评 本题考查数列的通项公式的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.关于衡量两个变量y与x之间线性相关关系的相关系数r与相关指数R2中,下列说法中正确的是(  )
A.r越大,两变量的线性相关性越强B.R2越大,两变量的线性相关性越强
C.r的取值范围为(-∞,+∞)D.R2的取值范围为[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={x|3x+1<0},B={x|6x2-x-1≤0},则A∩B=(  )
A.$[-\frac{1}{3},\frac{1}{2}]$B.C.$(-∞,\frac{1}{3})$D.$\{\frac{1}{3}\}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆E的极坐标方程为ρ=4sinθ,以极点为原点、极轴为x轴的正半轴建立平面直角坐标系,取相同单位长度(其中ρ≥0,θ∈[0,2π)).若倾斜角为$\frac{3π}{4}$且经过坐标原点的直线l与圆E相交于点A(A点不是原点).
(1)求点A的极坐标;
(2)设直线m过线段OA的中点M,且直线m交圆E于B,C两点,求||MB|-|MC||的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某程序框图如图所示,若输入的t=4,则输出的k等于(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数f(x)=log2(x+a)与g(x)=x2-(a+1)x-4(a+5)存在相同的零点,则a的值为(  )
A.4或-$\frac{5}{2}$B.4或-2C.5或-2D.6或-$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在数列{an}中,若$\sqrt{{a}_{n+1}}$=$\sqrt{{a}_{n}}$+$\sqrt{2}$,a1=8,则数列{an}的通项公式为(  )
A.an=2(n+1)2B.an=4(n+1)C.an=8n2D.an=4n(n+1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=x2-($\frac{1}{2}$)x的大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某小卖部为了了解热茶销售量y(杯)与气温x(℃)之间的关系,随机统计了某4天卖出的热茶的杯数与当天气温,并制作了对照表:
气温(℃)181310-1
杯数24343864
由表中数据算得线性回归方程$\stackrel{∧}{y}$=bx+a中的b=-2,预测当气温为-5°时,热茶销售量为(  )
A.70B.50C.60D.80

查看答案和解析>>

同步练习册答案