精英家教网 > 高中数学 > 题目详情

(理数)(14分) 已知函数
(Ⅰ)设函数F(x)=18f(x)- [h(x)],求F(x)的单调区间与极值;
(Ⅱ)设,解关于x的方程
(Ⅲ)设,证明:

(理数) 解:(Ⅰ)

,得舍去).
时.;当时,
故当时,为增函数;当时,为减函数.
的极大值点,且.………………………………4分
(Ⅱ)原方程可化为,即
……………6分

①当时,原方程有一解
②当时,原方程有二解;…………8分
③当时,原方程有一解
④当时,原方程无解.……………………10分
(Ⅲ)由已知得

设数列的前n项和为,且
从而有,当时,


即对任意时,有,又因为,所以………14分.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数.
(1)若的两个极值点为,且,求实数的值;
(2)是否存在实数,使得上的单调函数?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)
已知函数
(Ⅰ)当时,若上单调递增,求的取值范围;
(Ⅱ)求满足下列条件的所有实数对:当是整数时,存在,使得的最大值,的最小值;
(Ⅲ)对满足(Ⅱ)的条件的一个实数对,试构造一个定义在,且上的函数,使当时,,当时,取得最大值的自变量的值构成以为首项的等差数列。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数f(x)=,其中a , b , c是以d为公差的等差数列,且a>0,d>0.设[1-]上,,在,将点A, B, C,
(Ⅰ)求
(II)若⊿ABC有一边平行于x轴,且面积为,求a ,d的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax+blnx在x=1处有极值.
(1)求a,b的值;
(2)判断函数y=f(x)的单调性并求出单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 (1)若在区间上是增函数,求实数的取值范围; (2)若的极值点,求上的最大值;(3)在(2)的条件下,是否存在实数,使得函数的图像与函数的图象恰有3个交点?若存在,请求出实数的取值范围;若不存在,试说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数
(I)求的单调区间;
(II)若对于任意的,都有求a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)已知函数(常数.
(Ⅰ) 当时,求曲线在点处的切线方程;
(Ⅱ)讨论函数在区间上零点的个数(为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

查看答案和解析>>

同步练习册答案