精英家教网 > 高中数学 > 题目详情
14.设定义在R上的奇函数f(x)单调递增,则不等式log2x•f(x)>0的解集为(1,+∞).

分析 根据条件可得到f(0)=0,从而由log2x•f(x)>0可得到$\left\{\begin{array}{l}{lo{g}_{2}x>0}\\{f(x)>f(0)}\end{array}\right.$,或$\left\{\begin{array}{l}{lo{g}_{2}x<0}\\{f(x)<f(0)}\end{array}\right.$,这样根据f(x)在R上单调递增及y=log2x的单调性便可解出前面的不等式组,从而得出原不等式的解集.

解答 解:f(x)为定义在R上的奇函数;
∴f(0)=0;
∴由log2x•f(x)>0得,$\left\{\begin{array}{l}{lo{g}_{2}x>0}\\{f(x)>f(0)}\end{array}\right.$,或$\left\{\begin{array}{l}{lo{g}_{2}x<0}\\{f(x)<f(0)}\end{array}\right.$;
f(x)在R上单调递增;
∴上面不等式组变成$\left\{\begin{array}{l}{x>1}\\{x>0}\end{array}\right.$,或$\left\{\begin{array}{l}{0<x<1}\\{x<0}\end{array}\right.$;
∴解得x>1;
∴原不等式的解集为(1,+∞).
故答案为:(1,+∞).

点评 考查奇函数的定义,奇函数在原点有定义时,原点处的函数值为0,对数函数的单调性,以及根据单调性定义解不等式的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知$f(x)=sin(ωx+φ)(ω>0,|φ|<\frac{π}{2})$满足$f(x)=-f(x+\frac{π}{2}),f(0)=\frac{1}{2}$,则g(x)=2cos(ωx+φ)在区间$[0,\frac{π}{2}]$上的最大值为(  )
A.4B.$\sqrt{3}$C.1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.广场舞是现代城市群众文化、娱乐发展的产物,其兼具文化性和社会性,是精神文明建设成果的一个重要指标和象征.2015年某高校社会实践小组对某小区跳广场舞的人的年龄进行了凋查,随机抽取了40名广场舞者进行调查,将他们年龄分成6段:[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如图所示的频率分布直方图.
(1)估计在40名广场舞者中年龄分布在[40,70)的人数;
(2)求40名广场舞者年龄的中位数和平均数的估计值;
(3)若从年龄在[20,40)中的广场舞者中任取2名,求这两名广场舞者年龄在[30,40)中的人数X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知A,B是锐角△ABC的两个内角,二次函数f(x)=m2x2-2m2x+1,那么(  )
A.f(sinA)>f(cosA)B.f(cosA)>f(sinA)C.f(cosA)>f(sinB)D.f(sinA)>f(cosB)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=$\left\{\begin{array}{l}{{3}^{x},x≥0}\\{3x+1,x<0}\end{array}\right.$,则不等式f(x)<4f(x)+1的解集是{x|x>-$\frac{1}{9}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}的前n项和是Sn,且Sn+$\frac{1}{2}$an=1(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=$lo{g}_{\frac{1}{3}}$(1-Sn+1)(n∈N*),求数列{$\frac{1}{{b}_{n}{b}_{n+1}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知向量$\overrightarrow{m}$=(cosωx,a),$\overrightarrow{n}$=(a,2+$\sqrt{3}$sinωx),ω>0,函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$-5(a∈R,a≠0).
(1)当函数f(x)在x∈R上的最大值为3时,求a的值;
(2)在(1)的条件下,若函数y=f(x)-1在x∈(0,π]上至少有5个零点,求ω的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.数列{an}中,a1=1,an+1=-an+n2,求数列{an}的通项公式及a2000

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.双曲线${x^2}-\frac{y^2}{3}=1$的右焦点坐标是(2,0);焦点到渐近线的距离为$\sqrt{3}$.

查看答案和解析>>

同步练习册答案