精英家教网 > 高中数学 > 题目详情
8.在正项等比数列{an}中,若a3-a5=5,则a3+a5的取值范围为(5,+∞).

分析 法一、令a3+a5=t,与已知等式联立求得a3、a5,结合$\frac{{a}_{5}}{{a}_{3}}={q}^{2}(0<q<1)$即可求得答案.
法二、设等比数列的公比为q,由a3-a5=5,得${a}_{3}(1-{q}^{2})=5$,可得0<q<1,则a3+a5=5+10$•\frac{{q}^{2}}{1-{q}^{2}}$,当q→0时,10$•\frac{{q}^{2}}{1-{q}^{2}}$→0;当q→1时,10$•\frac{{q}^{2}}{1-{q}^{2}}$→∞,由此求得答案.

解答 解:法一、
令a3+a5=t,
联立$\left\{\begin{array}{l}{{a}_{3}-{a}_{5}=5}\\{{a}_{3}+{a}_{5}=t}\end{array}\right.$,解得${a}_{3}=\frac{t+5}{2}$,${a}_{5}=\frac{t-5}{2}$,
显然只有0<q<1才能保证an为正项且a3>a5
则由$\frac{{a}_{5}}{{a}_{3}}=\frac{t-5}{t+5}={q}^{2}∈(0,1)$,解得t>5.
即a3+a5∈(5,+∞).
故答案为:(5,+∞).
法二、
设等比数列的公比为q,由a3-a5=5,得${a}_{3}(1-{q}^{2})=5$,
显然只有0<q<1才能保证an为正项且a3>a5
则a3+a5=a3(1+q2)=a3(1-q2)+2a3q2=5+2a3q2=5+10$•\frac{{q}^{2}}{1-{q}^{2}}$,
当q→0时,10$•\frac{{q}^{2}}{1-{q}^{2}}$→0;当q→1时,10$•\frac{{q}^{2}}{1-{q}^{2}}$→∞,
∴a3+a5>5.
故答案为:(5,+∞).

点评 本题考查等比数列的通项公式,考查了数列的函数特性,考查极限思想方法的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率e=$\frac{\sqrt{6}}{3}$,F1、F2为其左、右焦点,M为椭圆E上一点,且△MF1F2面积的最大值为4$\sqrt{2}$.
(1)求椭圆E的标准方程;
(2)设直线l:y=x+m(m∈R)与椭圆E交于不同两点A、B,且|AB|=3$\sqrt{2}$,P为直线y=2上一点,满足|$\overrightarrow{PA}$|=|$\overrightarrow{PB}$|,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}的前n项和是Sn,且Sn+$\frac{1}{2}$an=1(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=$lo{g}_{\frac{1}{3}}$(1-Sn+1)(n∈N*),求数列{$\frac{1}{{b}_{n}{b}_{n+1}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=3sin(x+$\frac{π}{4}$).
(1)用五点法画出它在一个周期内的闭区间上的图象;
(2)写出f(x)的值域、最小正周期、对称轴,单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.数列{an}中,a1=1,an+1=-an+n2,求数列{an}的通项公式及a2000

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知等比数列{an}的首项为1,若4a1,2a2,a3成等差数列,数列{$\frac{1}{{a}_{n}}$}的前n项和为Sn,则满足不等式Sn>$\frac{125}{63}$的n的最小值为(  )
A.7B.6C.5D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(1)函数y=3cos(2x-$\frac{π}{3}$),x∈R在什么区间上是减函数?
(2)函数y=sin(-3x+$\frac{π}{4}$),x∈R在什么区间上是增函数?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知向量$\overrightarrow{a}$=(cosα,tanα),$\overrightarrow{b}$=(3,-cosα),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,
(1)若α∈(π,2π),求cosα的值;
(2)求$\frac{2sinαcosα+co{s}^{2}α}{3co{s}^{2}α-si{n}^{2}α}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.甲、乙两人进行定点投篮比赛,在距篮筐3米线内设一点A,在点A处投中一球得2分,不中得0分,在距篮筐3米线段外设一点B,在点B处投中一球得3分,不中得0分,已知甲乙两人在A点投中的概率都是$\frac{1}{2}$,在B点投中的概率都是$\frac{1}{3}$,且在A,B两点处投中与否相互独立,设定甲乙两人现在A处各投篮一次,然后在B处各投篮一次,总得分高者获胜.
(Ⅰ)求甲投篮总得分ξ的分布列和数学期望;
(Ⅱ)求甲获胜的概率.

查看答案和解析>>

同步练习册答案