精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=lnx-$\frac{a(x+1)}{x-1}$,曲线y=f(x)在点($\frac{1}{2}$,f($\frac{1}{2}$))处的切线平行于直线y=10x+1.
(1)求函数f(x)的单调区间;
(2)设直线l为函数y=lnx图象上任意一点A(x0,y0)处的切线,在区间(1,+∞)上是否存在x0,使得直线l与曲线y=ex也相切?若存在,满足条件的x0有几个?

分析 (1)求导函数,利用曲线y=f(x)在点($\frac{1}{2}$,f($\frac{1}{2}$))处的切线平行于直线y=10x+1,求出a,再确定导数恒大于0,从而可得求函数f(x)的单调区间;
(2)先求直线l为函数的图象上一点A(x0,y0)处的切线方程,再设直线l与曲线y=g(x)=ex相切于点(x1,${e}^{{x}_{1}}$),进而可得lnx0=$\frac{{x}_{0}+1}{{x}_{0}-1}$,再证明在区间(1,+∞)上x0存在且唯一即可.

解答 解:(1)∵函数f(x)=lnx-$\frac{a(x+1)}{x-1}$,
∴f′(x)=$\frac{1}{x}$+$\frac{2a}{(x-1)^{2}}$,
∵曲线y=f(x)在点($\frac{1}{2}$,f($\frac{1}{2}$))处的切线平行于直线y=10x+1,
∴f′($\frac{1}{2}$)=2+8a=10,
∴a=1
∴f′(x)=$\frac{{x}^{2}+1}{x(x-1)^{2}}$
∵x>0且x≠1,∴f'(x)>0
∴函数φ(x)的单调递增区间为(0,1)和(1,+∞).(5分)
(2)证明:∵y=lnx,∴切线l的方程为y-lnx0=$\frac{1}{{x}_{0}}$(x-x0
即y=$\frac{1}{{x}_{0}}$x+lnx0-1,①(6分)
设直线l与曲线y=g(x)相切于点(x1,${e}^{{x}_{1}}$),
∵g'(x)=ex,∴${e}^{{x}_{1}}$=$\frac{1}{{x}_{0}}$,
∴x1=-lnx0.(8分)
∴直线l也为y-$\frac{1}{{x}_{0}}$=$\frac{1}{{x}_{0}}$(x+lnx0),
即y=$\frac{1}{{x}_{0}}$x+$\frac{ln{x}_{0}}{{x}_{0}}$+$\frac{1}{{x}_{0}}$,②(9分)
由①②得lnx0-1=$\frac{ln{x}_{0}}{{x}_{0}}$+$\frac{1}{{x}_{0}}$,
∴lnx0=$\frac{{x}_{0}+1}{{x}_{0}-1}$.(11分)
下证:在区间(1,+∞)上x0存在且唯一.
由(1)可知,f(x)=lnx-$\frac{x+1}{x-1}$在区间(1,+∞)上递增.
又f(e)=-$\frac{2}{e-1}$<0,f(e2)=$\frac{{e}^{2}-3}{{e}^{2}-1}$>0,(13分)
结合零点存在性定理,说明方程f(x)=0必在区间(e,e2)上有唯一的根,这个根就是所求的唯一x0

点评 本题以函数为载体,考查导数知识的运用,考查函数的单调性,考查曲线的切线,同时考查零点存在性定理,综合性比较强.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)是偶函数,定义域为R,在[0,+∞)上是减函数,且f(-$\frac{3}{2}$)>f(2a+$\frac{5}{2}$),则a的取值范围是a>-$\frac{1}{2}$或x<-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若等比数列{αn}中,a1=1,an=-512,前n项和为Sn=-341,则n的值是10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,E、F、G、H分别为正方体ABCD-A1B1C1D1的棱AB、BC、CC1、D1A1的中点,证明:E、F、G、H四点共面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求证:$\frac{si{n}^{2}x}{1+cotx}$+$\frac{co{s}^{2}x}{1+tanx}$=1-sinxcosx.[提示:a3+b3=(a+b)(a2-ab+b2)].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知菱形边长为$\sqrt{2}$,∠DAB=45°,若E为CD的中点,则$\overrightarrow{AD}$•$\overrightarrow{AE}$=$\frac{\sqrt{2}}{2}$+2,$\overrightarrow{AE}$•$\overrightarrow{AB}$=1+$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知向量$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow{c}$=-6$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$,其中$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$不共线.则$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{c}$的关系为(  )
A.不共线B.共线C.相等D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2|$\overrightarrow{b}$|=2,且($\overrightarrow{a}$-$\overrightarrow{b}$)⊥($\overrightarrow{a}$+3$\overrightarrow{b}$),则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角的正弦值为$\frac{\sqrt{15}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ax+$\frac{b}{x}$(a,b为常数),且f(1)=$\frac{5}{2}$,f(2)=$\frac{17}{4}$.
(1)求a,b的值;
(2)求函数f(x)在[$\frac{1}{4}$,2]上的最小值和最大值.

查看答案和解析>>

同步练习册答案